|
12 | 12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | 13 | # See the License for the specific language governing permissions and |
14 | 14 | # limitations under the License. |
15 | | -from typing import Any, Callable, Literal |
| 15 | +from typing import Callable, Literal |
16 | 16 |
|
17 | 17 |
|
18 | 18 | # TODO(@boxiangw): remove this once bump to python 3.12 |
|
22 | 22 | from typing_extensions import override |
23 | 23 |
|
24 | 24 | import torch |
| 25 | +from absl import logging |
25 | 26 | from torch.optim.optimizer import ParamsT |
26 | 27 |
|
27 | 28 | from emerging_optimizers import mixin as opt_mixin |
28 | 29 | from emerging_optimizers import utils |
| 30 | +from emerging_optimizers.orthogonalized_optimizers import muon_utils |
| 31 | +from emerging_optimizers.orthogonalized_optimizers.muon import get_muon_scale_factor |
29 | 32 | from emerging_optimizers.orthogonalized_optimizers.orthogonalized_optimizer import OrthogonalizedOptimizer |
30 | 33 |
|
31 | 34 |
|
@@ -73,21 +76,37 @@ def __init__( |
73 | 76 | eps: float = 1e-8, |
74 | 77 | weight_decay_method: opt_mixin.WeightDecayT = "decoupled", |
75 | 78 | fp32_matmul_prec: str, |
76 | | - scaled_orthogonalize_fn: Callable | None = None, |
77 | | - **kwargs: Any, |
| 79 | + coefficient_type: str = "quintic", |
| 80 | + num_ns_steps: int = 5, |
| 81 | + scale_mode: str = "spectral", |
| 82 | + extra_scale_factor: float = 1.0, |
| 83 | + use_syrk: bool = False, |
78 | 84 | ): |
79 | 85 | self.second_moment_method = second_moment_method |
80 | 86 |
|
| 87 | + def scaled_orthogonalize_fn(grad: torch.Tensor) -> torch.Tensor: |
| 88 | + logging.debug( |
| 89 | + f"Orthogonalizing grad with {num_ns_steps} steps, {coefficient_type} coefficient, " |
| 90 | + f"{scale_mode} scale mode, extra_scale_factor={extra_scale_factor}" |
| 91 | + ) |
| 92 | + orth_grad = muon_utils.newton_schulz( |
| 93 | + grad, |
| 94 | + steps=num_ns_steps, |
| 95 | + coefficient_type=coefficient_type, |
| 96 | + use_syrk=use_syrk, |
| 97 | + ) |
| 98 | + scale_factor = get_muon_scale_factor(grad.size(-2), grad.size(-1), mode=scale_mode) |
| 99 | + return orth_grad * scale_factor * extra_scale_factor |
| 100 | + |
81 | 101 | super().__init__( |
82 | | - params=params, |
83 | | - lr=lr, |
84 | | - momentum_beta=momentum_beta, |
85 | | - weight_decay=weight_decay, |
| 102 | + params, |
| 103 | + lr, |
| 104 | + momentum_beta, |
86 | 105 | use_nesterov=use_nesterov, |
| 106 | + weight_decay=weight_decay, |
87 | 107 | weight_decay_method=weight_decay_method, |
88 | 108 | fp32_matmul_prec=fp32_matmul_prec, |
89 | 109 | scaled_orthogonalize_fn=scaled_orthogonalize_fn, |
90 | | - **kwargs, |
91 | 110 | ) |
92 | 111 |
|
93 | 112 | for group in self.param_groups: |
@@ -154,7 +173,7 @@ def _apply_second_moment_normalization( |
154 | 173 | """ |
155 | 174 | if self.second_moment_method == "adamuon": |
156 | 175 | # AdamMuon: Full elementwise second moment like AdamW |
157 | | - # Update second moment with EMA of squared gradient |
| 176 | + # Update second moment with EMA of squared orthogonalized gradient |
158 | 177 | second_moment.lerp_(orth_grad.square(), 1 - beta2) |
159 | 178 |
|
160 | 179 | # AdamW-style division: grad / (sqrt(second_moment) + eps) |
@@ -224,8 +243,7 @@ def step(self, closure: Callable[[], float] | None = None) -> float | None: |
224 | 243 | grad = exp_avg |
225 | 244 |
|
226 | 245 | with utils.fp32_matmul_precision(self.fp32_matmul_prec): |
227 | | - group_kwargs = {k: v for k, v in group.items() if k != "params"} |
228 | | - grad = self.orthogonalize(p, grad, **group_kwargs) |
| 246 | + grad = self.scaled_orthogonalize_fn(grad) |
229 | 247 |
|
230 | 248 | # Apply second moment normalization |
231 | 249 | grad = self._apply_second_moment_normalization( |
|
0 commit comments