|
| 1 | +# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import logging |
| 16 | +import subprocess |
| 17 | +import time |
| 18 | + |
| 19 | +logging.basicConfig(level=logging.INFO) |
| 20 | +logger = logging.getLogger(__name__) |
| 21 | + |
| 22 | +from tests.functional_tests.utils.ray_test_utils import ( |
| 23 | + query_ray_deployment, |
| 24 | + terminate_deployment_process, |
| 25 | + wait_for_deployment_ready, |
| 26 | +) |
| 27 | + |
| 28 | + |
| 29 | +class TestDeployRayHFVLLM: |
| 30 | + def setup_method(self): |
| 31 | + """Setup for each test method.""" |
| 32 | + self.deploy_proc = None |
| 33 | + |
| 34 | + def teardown_method(self): |
| 35 | + """Cleanup after each test method.""" |
| 36 | + if self.deploy_proc is not None: |
| 37 | + terminate_deployment_process(self.deploy_proc) |
| 38 | + # Avoid double termination in case test used finally to clean up |
| 39 | + self.deploy_proc = None |
| 40 | + |
| 41 | + def test_deploy_ray_hf_vllm_backend(self): |
| 42 | + """Test deploying HuggingFace model with vLLM backend using Ray.""" |
| 43 | + hf_model_path = "meta-llama/Llama-3.2-1B" |
| 44 | + |
| 45 | + try: |
| 46 | + # Run Ray deployment for HF model with vLLM backend |
| 47 | + self.deploy_proc = subprocess.Popen( |
| 48 | + [ |
| 49 | + "coverage", |
| 50 | + "run", |
| 51 | + "--data-file=/workspace/.coverage", |
| 52 | + "--source=/workspace/", |
| 53 | + "--parallel-mode", |
| 54 | + "scripts/deploy/nlp/deploy_ray_hf.py", |
| 55 | + "--model_path", |
| 56 | + hf_model_path, |
| 57 | + "--task", |
| 58 | + "text-generation", |
| 59 | + "--model_id", |
| 60 | + "hf-llm-vllm", |
| 61 | + "--num_gpus", |
| 62 | + str(1), |
| 63 | + "--host", |
| 64 | + "0.0.0.0", |
| 65 | + "--port", |
| 66 | + str(8002), |
| 67 | + "--trust_remote_code", |
| 68 | + "--cuda_visible_devices", |
| 69 | + "0", |
| 70 | + "--use_vllm_backend", |
| 71 | + ] |
| 72 | + ) |
| 73 | + print("HF Deployment with vLLM backend started. Waiting for it to be ready...") |
| 74 | + |
| 75 | + # Wait for deployment to be ready |
| 76 | + if not wait_for_deployment_ready(host="0.0.0.0", port=8002, max_wait_time=300): |
| 77 | + assert False, "Deployment failed to become ready within timeout" |
| 78 | + |
| 79 | + time.sleep(20) |
| 80 | + |
| 81 | + # Test basic completion endpoint |
| 82 | + output = query_ray_deployment( |
| 83 | + host="0.0.0.0", |
| 84 | + port=8002, |
| 85 | + model_id="hf-llm-vllm", |
| 86 | + prompt="What is the color of a banana?", |
| 87 | + max_tokens=20, |
| 88 | + ) |
| 89 | + |
| 90 | + print(f"Basic completion response: {output}") |
| 91 | + |
| 92 | + # Check if deployment was successful |
| 93 | + assert output != "", "First prediction is empty" |
| 94 | + |
| 95 | + # Test chat completion endpoint |
| 96 | + output_chat = query_ray_deployment( |
| 97 | + host="0.0.0.0", |
| 98 | + port=8002, |
| 99 | + model_id="hf-llm-vllm", |
| 100 | + prompt=[{"role": "user", "content": "Hello, how are you?"}], |
| 101 | + max_tokens=20, |
| 102 | + use_chat=True, |
| 103 | + ) |
| 104 | + print(f"Chat completion response: {output_chat}") |
| 105 | + |
| 106 | + # Check if deployment was successful |
| 107 | + assert output_chat != "", "Second prediction (chat) is empty" |
| 108 | + |
| 109 | + # Test with different temperature |
| 110 | + output_temp = query_ray_deployment( |
| 111 | + host="0.0.0.0", |
| 112 | + port=8002, |
| 113 | + model_id="hf-llm-vllm", |
| 114 | + prompt="Tell me a short story about a cat.", |
| 115 | + max_tokens=30, |
| 116 | + temperature=0.9, |
| 117 | + ) |
| 118 | + print(f"High temperature response: {output_temp}") |
| 119 | + |
| 120 | + # Check if deployment was successful |
| 121 | + assert output_temp != "", "High temperature prediction is empty" |
| 122 | + |
| 123 | + finally: |
| 124 | + # Ensure the deployment is terminated as soon as queries complete or on failure |
| 125 | + if self.deploy_proc is not None: |
| 126 | + terminate_deployment_process(self.deploy_proc) |
| 127 | + self.deploy_proc = None |
| 128 | + |
| 129 | + def test_deploy_ray_hf_vllm_backend_with_parameters(self): |
| 130 | + """Test deploying HuggingFace model with vLLM backend and custom parameters.""" |
| 131 | + hf_model_path = "meta-llama/Llama-3.2-1B" |
| 132 | + |
| 133 | + try: |
| 134 | + # Run Ray deployment for HF model with vLLM backend and custom parameters |
| 135 | + self.deploy_proc = subprocess.Popen( |
| 136 | + [ |
| 137 | + "coverage", |
| 138 | + "run", |
| 139 | + "--data-file=/workspace/.coverage", |
| 140 | + "--source=/workspace/", |
| 141 | + "--parallel-mode", |
| 142 | + "scripts/deploy/nlp/deploy_ray_hf.py", |
| 143 | + "--model_path", |
| 144 | + hf_model_path, |
| 145 | + "--task", |
| 146 | + "text-generation", |
| 147 | + "--model_id", |
| 148 | + "hf-llm-vllm-params", |
| 149 | + "--num_gpus", |
| 150 | + str(1), |
| 151 | + "--host", |
| 152 | + "0.0.0.0", |
| 153 | + "--port", |
| 154 | + str(8003), |
| 155 | + "--trust_remote_code", |
| 156 | + "--cuda_visible_devices", |
| 157 | + "0", |
| 158 | + "--use_vllm_backend", |
| 159 | + "--num_replicas", |
| 160 | + str(1), |
| 161 | + "--num_gpus_per_replica", |
| 162 | + str(1), |
| 163 | + "--num_cpus_per_replica", |
| 164 | + str(4), |
| 165 | + "--max_ongoing_requests", |
| 166 | + str(5), |
| 167 | + ] |
| 168 | + ) |
| 169 | + print("HF Deployment with vLLM backend and custom parameters started. Waiting for it to be ready...") |
| 170 | + |
| 171 | + # Wait for deployment to be ready |
| 172 | + if not wait_for_deployment_ready(host="0.0.0.0", port=8003, max_wait_time=300): |
| 173 | + assert False, "Deployment failed to become ready within timeout" |
| 174 | + |
| 175 | + time.sleep(20) |
| 176 | + |
| 177 | + # Test multiple requests to verify the deployment handles them correctly |
| 178 | + prompts = [ |
| 179 | + "What is 2+2?", |
| 180 | + "Name a fruit that is red.", |
| 181 | + "What is the capital of France?", |
| 182 | + ] |
| 183 | + |
| 184 | + for i, prompt in enumerate(prompts): |
| 185 | + output = query_ray_deployment( |
| 186 | + host="0.0.0.0", |
| 187 | + port=8003, |
| 188 | + model_id="hf-llm-vllm-params", |
| 189 | + prompt=prompt, |
| 190 | + max_tokens=15, |
| 191 | + temperature=0.7, |
| 192 | + ) |
| 193 | + print(f"Request {i + 1} response: {output}") |
| 194 | + assert output != "", f"Prediction {i + 1} is empty" |
| 195 | + |
| 196 | + finally: |
| 197 | + # Ensure the deployment is terminated as soon as queries complete or on failure |
| 198 | + if self.deploy_proc is not None: |
| 199 | + terminate_deployment_process(self.deploy_proc) |
| 200 | + self.deploy_proc = None |
0 commit comments