Skip to content

Commit 0042f34

Browse files
authored
Update README to reflect current Repo Status (#15217)
* Update README to reflect current Repo Status Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com> * update to 25.09 Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com> * update to 25.09 Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com> --------- Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>
1 parent ace180b commit 0042f34

File tree

1 file changed

+23
-122
lines changed

1 file changed

+23
-122
lines changed

README.md

Lines changed: 23 additions & 122 deletions
Original file line numberDiff line numberDiff line change
@@ -13,19 +13,24 @@
1313

1414
<!-- markdownlint-disable -->
1515
<details open>
16-
<summary><b> <a href=https://huggingface.co/nvidia/NVIDIA-Nemotron-3-Nano-30B-A3B-BF16>NVIDIA-Nemotron-3-Nano-30B-A3B</a> is out with full reproducible script and recipes! Checkout <a href=https://github.com/NVIDIA-NeMo/Megatron-Bridge/tree/nano-v3>NeMo Megatron-Bridge</a>, <a href=https://github.com/NVIDIA-NeMo/Automodel/blob/main/examples/llm_finetune/nemotron/nemotron_nano_v3_squad.yaml>NeMo AutoModel</a>, <a href=https://github.com/NVIDIA-NeMo/RL>NeMo-RL</a> and <a href=https://catalog.ngc.nvidia.com/orgs/nvidia/containers/nemo?version=25.11.nemotron_3_nano>NGC container</a> to try them!(2025-12-15)
16+
<summary><b><a href=https://huggingface.co/nvidia/NVIDIA-Nemotron-3-Nano-30B-A3B-BF16>NVIDIA-Nemotron-3-Nano-30B-A3B</a> is out with full reproducible script and recipes! Check out <a href=https://github.com/NVIDIA-NeMo/Megatron-Bridge/tree/nano-v3>NeMo Megatron-Bridge</a>, <a href=https://github.com/NVIDIA-NeMo/AutoModel/blob/main/examples/llm_finetune/nemotron/nemotron_nano_v3_squad.yaml>NeMo AutoModel</a>, <a href=https://github.com/NVIDIA-NeMo/RL>NeMo-RL</a> and <a href=https://catalog.ngc.nvidia.com/orgs/nvidia/containers/nemo?version=25.11.nemotron_3_nano>NGC container</a> to try them!</b> (2025-12-15)
1717
</details>
1818

1919

20-
2120
<details open>
22-
<summary><b>Pivot notice: This repo will pivot to focus on speech models collections only. Please refer to <a href=https://github.com/NVIDIA-NeMo>NeMo Framework Github Org</a> for the complete list of repos under NeMo Framework</b></summary>
23-
NeMo 2.0, with its support for LLMs and VLMs will be deprecated by 25.11, and replaced by <a href=https://github.com/NVIDIA-NeMo/Megatron-Bridge>NeMo Megatron-Bridge</a> and <a href=https://github.com/NVIDIA-NeMo/Automodel>NeMo Automodel</a>. More details can be find in the <a href=https://github.com/NVIDIA-NeMo>NeMo Framework github org readme</a>. (2025-10-10)
21+
<summary><b>⚠️ Pivot notice: This repo will pivot to focus on speech models collections only. Please refer to <a href=https://github.com/NVIDIA-NeMo>NeMo Framework Github Org</a> for the complete list of repos under NeMo Framework</b></summary>
22+
NeMo 2.0, with its support for LLMs and VLMs will be deprecated by 25.11, and replaced by <a href=https://github.com/NVIDIA-NeMo/Megatron-Bridge>NeMo Megatron-Bridge</a> and <a href=https://github.com/NVIDIA-NeMo/AutoModel>NeMo AutoModel</a>. More details can be found in the <a href=https://github.com/NVIDIA-NeMo>NeMo Framework GitHub org readme</a>. (2025-10-10)
23+
24+
Following collections are deprecated and will be removed in a later release, please use previous versions if you are using them:
25+
- nlp
26+
- llm
27+
- vlm
28+
- vision
2429
</details>
2530

2631
<details closed>
2732
<summary><b>Pretrain and finetune :hugs:Hugging Face models via AutoModel</b></summary>
28-
Nemo Framework's latest feature AutoModel enables broad support for :hugs:Hugging Face models, with 25.04 focusing on
33+
NeMo Framework's latest feature AutoModel enables broad support for :hugs:Hugging Face models, with 25.04 focusing on
2934

3035

3136
- <a href=https://huggingface.co/transformers/v3.5.1/model_doc/auto.html#automodelforcausallm>AutoModelForCausalLM</a> in the <a href="https://huggingface.co/models?pipeline_tag=text-generation&sort=trending">Text Generation</a> category
@@ -35,7 +40,7 @@ More Details in Blog: <a href=https://developer.nvidia.com/blog/run-hugging-face
3540
</details>
3641

3742
<details closed>
38-
<summary><b>Training on Blackwell using Nemo</b></summary>
43+
<summary><b>Training on Blackwell using NeMo</b></summary>
3944
NeMo Framework has added Blackwell support, with <a href=https://docs.nvidia.com/nemo-framework/user-guide/latest/performance/performance_summary.html>performance benchmarks on GB200 & B200</a>. More optimizations to come in the upcoming releases.(2025-05-19)
4045
</details>
4146

@@ -82,7 +87,7 @@ More Details in Blog: <a href=https://developer.nvidia.com/blog/run-hugging-face
8287
State-of-the-Art Multimodal Generative AI Model Development with NVIDIA NeMo
8388
</a> (2024-11-06)
8489
</summary>
85-
NVIDIA recently announced significant enhancements to the NeMo platform, focusing on multimodal generative AI models. The update includes NeMo Curator and the Cosmos tokenizer, which streamline the data curation process and enhance the quality of visual data. These tools are designed to handle large-scale data efficiently, making it easier to develop high-quality AI models for various applications, including robotics and autonomous driving. The Cosmos tokenizers, in particular, efficiently map visual data into compact, semantic tokens, which is crucial for training large-scale generative models. The tokenizer is available now on the <a href=http://github.com/NVIDIA/cosmos-tokenizer/NVIDIA/cosmos-tokenizer>NVIDIA/cosmos-tokenizer</a> GitHub repo and on <a href=https://huggingface.co/nvidia/Cosmos-Tokenizer-CV8x8x8>Hugging Face</a>.
90+
NVIDIA recently announced significant enhancements to the NeMo platform, focusing on multimodal generative AI models. The update includes NeMo Curator and the Cosmos tokenizer, which streamline the data curation process and enhance the quality of visual data. These tools are designed to handle large-scale data efficiently, making it easier to develop high-quality AI models for various applications, including robotics and autonomous driving. The Cosmos tokenizers, in particular, efficiently map visual data into compact, semantic tokens, which is crucial for training large-scale generative models. The tokenizer is available now on the <a href=https://github.com/NVIDIA/cosmos-tokenizer>NVIDIA/cosmos-tokenizer</a> GitHub repo and on <a href=https://huggingface.co/nvidia/Cosmos-Tokenizer-CV8x8x8>Hugging Face</a>.
8691
<br><br>
8792
</details>
8893
<details>
@@ -216,22 +221,14 @@ NVIDIA NeMo 2.0 introduces several significant improvements over its predecessor
216221

217222
Overall, these enhancements make NeMo 2.0 a powerful, scalable, and user-friendly framework for AI model development.
218223

219-
> [!IMPORTANT]
220-
> NeMo 2.0 is currently supported by the LLM (large language model) and VLM (vision language model) collections.
221-
222224
### Get Started with NeMo 2.0
223225

224226
- Refer to the [Quickstart](https://docs.nvidia.com/nemo-framework/user-guide/latest/nemo-2.0/quickstart.html) for examples of using NeMo-Run to launch NeMo 2.0 experiments locally and on a slurm cluster.
225227
- For more information about NeMo 2.0, see the [NeMo Framework User Guide](https://docs.nvidia.com/nemo-framework/user-guide/latest/nemo-2.0/index.html).
226-
- [NeMo 2.0 Recipes](https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/llm/recipes) contains additional examples of launching large-scale runs using NeMo 2.0 and NeMo-Run.
227228
- For an in-depth exploration of the main features of NeMo 2.0, see the [Feature Guide](https://docs.nvidia.com/nemo-framework/user-guide/latest/nemo-2.0/features/index.html#feature-guide).
228229
- To transition from NeMo 1.0 to 2.0, see the [Migration Guide](https://docs.nvidia.com/nemo-framework/user-guide/latest/nemo-2.0/migration/index.html#migration-guide) for step-by-step instructions.
229230

230-
### Get Started with Cosmos
231-
232-
NeMo Curator and NeMo Framework support video curation and post-training of the Cosmos World Foundation Models, which are open and available on [NGC](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/cosmos/collections/cosmos) and [Hugging Face](https://huggingface.co/collections/nvidia/cosmos-6751e884dc10e013a0a0d8e6). For more information on video datasets, refer to [NeMo Curator](https://developer.nvidia.com/nemo-curator). To post-train World Foundation Models using the NeMo Framework for your custom physical AI tasks, see the [Cosmos Diffusion models](https://github.com/NVIDIA/Cosmos/blob/main/cosmos1/models/diffusion/nemo/post_training/README.md) and the [Cosmos Autoregressive models](https://github.com/NVIDIA/Cosmos/blob/main/cosmos1/models/autoregressive/nemo/post_training/README.md).
233-
234-
## LLMs and MMs Training, Alignment, and Customization
231+
## Training and Customization
235232

236233
All NeMo models are trained with
237234
[Lightning](https://github.com/Lightning-AI/lightning). Training is
@@ -246,55 +243,15 @@ include Tensor Parallelism (TP), Pipeline Parallelism (PP), Fully
246243
Sharded Data Parallelism (FSDP), Mixture-of-Experts (MoE), and Mixed
247244
Precision Training with BFloat16 and FP8, as well as others.
248245

249-
NeMo Transformer-based LLMs and MMs utilize [NVIDIA Transformer
250-
Engine](https://github.com/NVIDIA/TransformerEngine) for FP8 training on
251-
NVIDIA Hopper GPUs, while leveraging [NVIDIA Megatron
252-
Core](https://github.com/NVIDIA/Megatron-LM/tree/main/megatron/core) for
253-
scaling Transformer model training.
254-
255-
NeMo LLMs can be aligned with state-of-the-art methods such as SteerLM,
256-
Direct Preference Optimization (DPO), and Reinforcement Learning from
257-
Human Feedback (RLHF). See [NVIDIA NeMo
258-
Aligner](https://github.com/NVIDIA/NeMo-Aligner) for more information.
259-
260246
In addition to supervised fine-tuning (SFT), NeMo also supports the
261247
latest parameter efficient fine-tuning (PEFT) techniques such as LoRA,
262-
P-Tuning, Adapters, and IA3. Refer to the [NeMo Framework User
263-
Guide](https://docs.nvidia.com/nemo-framework/user-guide/latest/sft_peft/index.html)
264-
for the full list of supported models and techniques.
265-
266-
## LLMs and MMs Deployment and Optimization
267-
268-
NeMo LLMs and MMs can be deployed and optimized with [NVIDIA NeMo
269-
Microservices](https://developer.nvidia.com/nemo-microservices-early-access).
248+
P-Tuning, Adapters, and IA3.
270249

271250
## Speech AI
272251

273252
NeMo ASR and TTS models can be optimized for inference and deployed for
274253
production use cases with [NVIDIA Riva](https://developer.nvidia.com/riva).
275254

276-
## NeMo Framework Launcher
277-
278-
> [!IMPORTANT]
279-
> NeMo Framework Launcher is compatible with NeMo version 1.0 only. [NeMo-Run](https://github.com/NVIDIA/NeMo-Run) is recommended for launching experiments using NeMo 2.0.
280-
281-
[NeMo Framework
282-
Launcher](https://github.com/NVIDIA/NeMo-Megatron-Launcher) is a
283-
cloud-native tool that streamlines the NeMo Framework experience. It is
284-
used for launching end-to-end NeMo Framework training jobs on CSPs and
285-
Slurm clusters.
286-
287-
The NeMo Framework Launcher includes extensive recipes, scripts,
288-
utilities, and documentation for training NeMo LLMs. It also includes
289-
the NeMo Framework [Autoconfigurator](https://github.com/NVIDIA/NeMo-Megatron-Launcher#53-using-autoconfigurator-to-find-the-optimal-configuration),
290-
which is designed to find the optimal model parallel configuration for
291-
training on a specific cluster.
292-
293-
To get started quickly with the NeMo Framework Launcher, please see the
294-
[NeMo Framework
295-
Playbooks](https://docs.nvidia.com/nemo-framework/user-guide/latest/playbooks/index.html).
296-
The NeMo Framework Launcher does not currently support ASR and TTS
297-
training, but it will soon.
298255

299256
## Get Started with NeMo Framework
300257

@@ -323,11 +280,9 @@ multi-GPU/multi-node training.
323280

324281
## Key Features
325282

326-
- [Large Language Models](nemo/collections/nlp/README.md)
327283
- [Multimodal](nemo/collections/multimodal/README.md)
328284
- [Automatic Speech Recognition](nemo/collections/asr/README.md)
329285
- [Text to Speech](nemo/collections/tts/README.md)
330-
- [Computer Vision](nemo/collections/vision/README.md)
331286

332287
## Requirements
333288

@@ -396,7 +351,7 @@ To install nemo_toolkit from such a wheel, use the following installation method
396351
pip install "nemo_toolkit[all]"
397352
```
398353

399-
If a more specific version is desired, we recommend a Pip-VCS install. From [NVIDIA/NeMo](github.com/NVIDIA/NeMo), fetch the commit, branch, or tag that you would like to install.
354+
If a more specific version is desired, we recommend a Pip-VCS install. From [NVIDIA/NeMo](https://github.com/NVIDIA/NeMo), fetch the commit, branch, or tag that you would like to install.
400355
To install nemo_toolkit from this Git reference `$REF`, use the following installation method:
401356

402357
```bash
@@ -415,18 +370,16 @@ following domain-specific commands:
415370
```bash
416371
pip install nemo_toolkit['all'] # or pip install "nemo_toolkit['all']@git+https://github.com/NVIDIA/NeMo@${REF:-'main'}"
417372
pip install nemo_toolkit['asr'] # or pip install "nemo_toolkit['asr']@git+https://github.com/NVIDIA/NeMo@$REF:-'main'}"
418-
pip install nemo_toolkit['nlp'] # or pip install "nemo_toolkit['nlp']@git+https://github.com/NVIDIA/NeMo@${REF:-'main'}"
419373
pip install nemo_toolkit['tts'] # or pip install "nemo_toolkit['tts']@git+https://github.com/NVIDIA/NeMo@${REF:-'main'}"
420-
pip install nemo_toolkit['vision'] # or pip install "nemo_toolkit['vision']@git+https://github.com/NVIDIA/NeMo@${REF:-'main'}"
421374
pip install nemo_toolkit['multimodal'] # or pip install "nemo_toolkit['multimodal']@git+https://github.com/NVIDIA/NeMo@${REF:-'main'}"
422375
```
423376

424377
### NGC PyTorch container
425378

426-
**NOTE: The following steps are supported beginning with 24.04 (NeMo-Toolkit 2.3.0)**
379+
**NOTE: The following steps are supported beginning with 25.09 (NeMo-Toolkit 2.6.0)**
427380

428381
We recommended that you start with a base NVIDIA PyTorch container:
429-
nvcr.io/nvidia/pytorch:25.01-py3.
382+
nvcr.io/nvidia/pytorch:25.09-py3.
430383

431384
If starting with a base NVIDIA PyTorch container, you must first launch
432385
the container:
@@ -439,10 +392,10 @@ docker run \
439392
--shm-size=16g \
440393
--ulimit memlock=-1 \
441394
--ulimit stack=67108864 \
442-
nvcr.io/nvidia/pytorch:${NV_PYTORCH_TAG:-'nvcr.io/nvidia/pytorch:25.01-py3'}
395+
${NV_PYTORCH_TAG:-'nvcr.io/nvidia/pytorch:25.09-py3'}
443396
```
444397

445-
From [NVIDIA/NeMo](github.com/NVIDIA/NeMo), fetch the commit/branch/tag that you want to install.
398+
From [NVIDIA/NeMo](https://github.com/NVIDIA/NeMo), fetch the commit/branch/tag that you want to install.
446399
To install nemo_toolkit including all of its dependencies from this Git reference `$REF`, use the following installation method:
447400

448401
```bash
@@ -458,9 +411,9 @@ pip install ".[all]"
458411

459412
NeMo containers are launched concurrently with NeMo version updates.
460413
NeMo Framework now supports LLMs, MMs, ASR, and TTS in a single
461-
consolidated Docker container. You can find additional information about
462-
released containers on the [NeMo releases
463-
page](https://github.com/NVIDIA/NeMo/releases).
414+
consolidated Docker container. The latest container is based on NeMo 2.6.0.
415+
You can find additional information about released containers on the
416+
[NeMo releases page](https://github.com/NVIDIA/NeMo/releases).
464417

465418
To use a pre-built container, run the following code:
466419

@@ -472,14 +425,9 @@ docker run \
472425
--shm-size=16g \
473426
--ulimit memlock=-1 \
474427
--ulimit stack=67108864 \
475-
nvcr.io/nvidia/pytorch:${NV_PYTORCH_TAG:-'nvcr.io/nvidia/nemo:25.02'}
428+
nvcr.io/nvidia/nemo:25.11.01
476429
```
477430

478-
## Future Work
479-
480-
The NeMo Framework Launcher does not currently support ASR and TTS
481-
training, but it will soon.
482-
483431
## Discussions Board
484432

485433
FAQ can be found on the NeMo [Discussions
@@ -503,53 +451,6 @@ to the `gh-pages-src` branch of this repository. For detailed
503451
information, please consult the README located at the [gh-pages-src
504452
branch](https://github.com/NVIDIA/NeMo/tree/gh-pages-src#readme).
505453

506-
## Blogs
507-
508-
<!-- markdownlint-disable -->
509-
<details open>
510-
<summary><b>Large Language Models and Multimodal Models</b></summary>
511-
<details>
512-
<summary>
513-
<a href="https://blogs.nvidia.com/blog/bria-builds-responsible-generative-ai-using-nemo-picasso/">
514-
Bria Builds Responsible Generative AI for Enterprises Using NVIDIA NeMo, Picasso
515-
</a> (2024/03/06)
516-
</summary>
517-
Bria, a Tel Aviv startup at the forefront of visual generative AI for enterprises now leverages the NVIDIA NeMo Framework.
518-
The Bria.ai platform uses reference implementations from the NeMo Multimodal collection, trained on NVIDIA Tensor Core GPUs, to enable high-throughput and low-latency image generation.
519-
Bria has also adopted NVIDIA Picasso, a foundry for visual generative AI models, to run inference.
520-
<br><br>
521-
</details>
522-
<details>
523-
<summary>
524-
<a href="https://developer.nvidia.com/blog/new-nvidia-nemo-framework-features-and-nvidia-h200-supercharge-llm-training-performance-and-versatility/">
525-
New NVIDIA NeMo Framework Features and NVIDIA H200
526-
</a> (2023/12/06)
527-
</summary>
528-
NVIDIA NeMo Framework now includes several optimizations and enhancements,
529-
including:
530-
1) Fully Sharded Data Parallelism (FSDP) to improve the efficiency of training large-scale AI models,
531-
2) Mix of Experts (MoE)-based LLM architectures with expert parallelism for efficient LLM training at scale,
532-
3) Reinforcement Learning from Human Feedback (RLHF) with TensorRT-LLM for inference stage acceleration, and
533-
4) up to 4.2x speedups for Llama 2 pre-training on NVIDIA H200 Tensor Core GPUs.
534-
<br><br>
535-
<a href="https://developer.nvidia.com/blog/new-nvidia-nemo-framework-features-and-nvidia-h200-supercharge-llm-training-performance-and-versatility">
536-
<img src="https://github.com/sbhavani/TransformerEngine/blob/main/docs/examples/H200-NeMo-performance.png" alt="H200-NeMo-performance" style="width: 600px;"></a>
537-
<br><br>
538-
</details>
539-
<details>
540-
<summary>
541-
<a href="https://blogs.nvidia.com/blog/nemo-amazon-titan/">
542-
NVIDIA now powers training for Amazon Titan Foundation models
543-
</a> (2023/11/28)
544-
</summary>
545-
NVIDIA NeMo Framework now empowers the Amazon Titan foundation models (FM) with efficient training of large language models (LLMs).
546-
The Titan FMs form the basis of Amazon’s generative AI service, Amazon Bedrock.
547-
The NeMo Framework provides a versatile framework for building, customizing, and running LLMs.
548-
<br><br>
549-
</details>
550-
</details>
551-
<!-- markdownlint-enable -->
552-
553454
## Licenses
554455

555456
NeMo is licensed under the [Apache License 2.0](https://github.com/NVIDIA/NeMo?tab=Apache-2.0-1-ov-file).

0 commit comments

Comments
 (0)