|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +from config import Config |
| 4 | + |
| 5 | +def generate_causal_mask(size): |
| 6 | + mask = torch.triu(torch.ones(size, size) * float('-inf'), diagonal=1) |
| 7 | + return mask |
| 8 | + |
| 9 | +class GPT(nn.Module): |
| 10 | + def __init__(self): |
| 11 | + super().__init__() |
| 12 | + self.token_emb = nn.Embedding(Config.vocab_size, Config.d_model) |
| 13 | + self.pos_emb = nn.Parameter(torch.zeros(1, Config.seq_len, Config.d_model)) |
| 14 | + encoder_layer = nn.TransformerEncoderLayer( |
| 15 | + d_model=Config.d_model, |
| 16 | + nhead=Config.n_heads, |
| 17 | + dim_feedforward=4 * Config.d_model, |
| 18 | + dropout=0.1, |
| 19 | + activation='gelu' |
| 20 | + ) |
| 21 | + self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=Config.n_layers) |
| 22 | + self.ln_f = nn.LayerNorm(Config.d_model) |
| 23 | + self.head = nn.Linear(Config.d_model, Config.vocab_size) |
| 24 | + |
| 25 | + def forward(self, idx): |
| 26 | + B, T = idx.size() |
| 27 | + tok = self.token_emb(idx) # (B, T, d_model) |
| 28 | + pos = self.pos_emb[:, :T, :] # (1, T, d_model) |
| 29 | + x = tok + pos |
| 30 | + x = x.transpose(0, 1) # (T, B, d_model) |
| 31 | + mask = generate_causal_mask(T).to(x.device) |
| 32 | + x = self.transformer(x, mask=mask) |
| 33 | + x = x.transpose(0, 1) # (B, T, d_model) |
| 34 | + x = self.ln_f(x) |
| 35 | + logits = self.head(x) # (B, T, vocab_size) |
| 36 | + return logits |
0 commit comments