|
16 | 16 |
|
17 | 17 | | Notebook | Domain | Description | |
18 | 18 | |---------------------------------------------------|---------------------|-----------------------------------------------------------------| |
19 | | -| [person-sampler-tutorial.ipynb](./advanced/person-samplers/person-sampler-tutorial.ipynb) | Persona Samplers | Generate realistic personas using the person sampler | |
20 | | -| [clinical-trials.ipynb](./advanced/healthcare-datasets/clinical-trials.ipynb) | Healthcare | Build synthetic clinical trial datasets with realistic PII for testing data protection | |
21 | | -| [insurance-claims.ipynb](./advanced/healthcare-datasets/insurance-claims.ipynb) | Healthcare | Create synthetic insurance claims datasets with realistic claim data and processing information | |
22 | | -| [physician-notes-with-realistic-personal-details.ipynb](./advanced/healthcare-datasets/physician-notes-with-realistic-personal-details.ipynb) | Healthcare | Generate realistic patient data and physician notes with embedded personal information | |
23 | | -| [w2-dataset.ipynb](./advanced/forms/w2-dataset.ipynb) | Forms & Documents | Generate synthetic W-2 tax form datasets with realistic employee and employer information | |
24 | | -| [multi-turn-conversation.ipynb](./advanced/multi-turn-chat/multi-turn-conversation.ipynb) | Conversational AI | Build synthetic conversational data with realistic person details and multi-turn dialogues | |
25 | | -| [visual-question-answering-using-vlm.ipynb](./advanced/multimodal/visual-question-answering-using-vlm.ipynb) | Multimodal | Create visual question answering datasets using Vision Language Models | |
26 | | -| [product-question-answer-generator.ipynb](./advanced/qa-generation/product-question-answer-generator.ipynb) | Q&A Generation | Build product information datasets with corresponding questions and answers | |
27 | | -| [generate-rag-evaluation-dataset.ipynb](./advanced/rag-examples/generate-rag-evaluation-dataset.ipynb) | RAG & Retrieval | Generate diverse RAG evaluation datasets for testing retrieval-augmented generation systems | |
28 | | -| [reasoning-traces.ipynb](./advanced/reasoning/reasoning-traces.ipynb) | Reasoning | Build synthetic reasoning traces to demonstrate step-by-step problem-solving processes | |
29 | | -| [text-to-python.ipynb](./advanced/text-to-code/text-to-python.ipynb) | Text-to-Code | Generate Python code from natural language instructions with validation and evaluation | |
30 | | -| [text-to-python-evol.ipynb](./advanced/text-to-code/text-to-python-evol.ipynb) | Text-to-Code | Build advanced Python code generation with evolutionary improvements and iterative refinement | |
31 | | -| [text-to-sql.ipynb](./advanced/text-to-code/text-to-sql.ipynb) | Text-to-Code | Create SQL queries from natural language descriptions with validation and testing | |
| 19 | +| [person-sampler-tutorial.ipynb](./person-samplers/person-sampler-tutorial.ipynb) | Persona Samplers | Generate realistic personas using the person sampler | |
| 20 | +| [clinical-trials.ipynb](./healthcare-datasets/clinical-trials.ipynb) | Healthcare | Build synthetic clinical trial datasets with realistic PII for testing data protection | |
| 21 | +| [insurance-claims.ipynb](./healthcare-datasets/insurance-claims.ipynb) | Healthcare | Create synthetic insurance claims datasets with realistic claim data and processing information | |
| 22 | +| [physician-notes-with-realistic-personal-details.ipynb](./healthcare-datasets/physician-notes-with-realistic-personal-details.ipynb) | Healthcare | Generate realistic patient data and physician notes with embedded personal information | |
| 23 | +| [w2-dataset.ipynb](./forms/w2-dataset.ipynb) | Forms & Documents | Generate synthetic W-2 tax form datasets with realistic employee and employer information | |
| 24 | +| [multi-turn-conversation.ipynb](./multi-turn-chat/multi-turn-conversation.ipynb) | Conversational AI | Build synthetic conversational data with realistic person details and multi-turn dialogues | |
| 25 | +| [visual-question-answering-using-vlm.ipynb](./multimodal/visual-question-answering-using-vlm.ipynb) | Multimodal | Create visual question answering datasets using Vision Language Models | |
| 26 | +| [product-question-answer-generator.ipynb](./qa-generation/product-question-answer-generator.ipynb) | Q&A Generation | Build product information datasets with corresponding questions and answers | |
| 27 | +| [generate-rag-evaluation-dataset.ipynb](./rag-examples/generate-rag-evaluation-dataset.ipynb) | RAG & Retrieval | Generate diverse RAG evaluation datasets for testing retrieval-augmented generation systems | |
| 28 | +| [reasoning-traces.ipynb](./reasoning/reasoning-traces.ipynb) | Reasoning | Build synthetic reasoning traces to demonstrate step-by-step problem-solving processes | |
| 29 | +| [text-to-python.ipynb](./text-to-code/text-to-python.ipynb) | Text-to-Code | Generate Python code from natural language instructions with validation and evaluation | |
| 30 | +| [text-to-python-evol.ipynb](./text-to-code/text-to-python-evol.ipynb) | Text-to-Code | Build advanced Python code generation with evolutionary improvements and iterative refinement | |
| 31 | +| [text-to-sql.ipynb](./text-to-code/text-to-sql.ipynb) | Text-to-Code | Create SQL queries from natural language descriptions with validation and testing | |
0 commit comments