Skip to content

Commit 9a7f66f

Browse files
committed
reordered README
1 parent fbe475e commit 9a7f66f

File tree

1 file changed

+37
-36
lines changed

1 file changed

+37
-36
lines changed

nemo/NeMo-Data-Designer/README.md

Lines changed: 37 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -2,34 +2,23 @@
22

33
This directory contains the tutorial notebooks for getting started with NeMo Data Designer.
44

5-
## 📚 Table of Contents
5+
## 📦 Set Up the Environment
66

7-
### 🚀 Intro Tutorials
7+
We will use the `uv` package manager to set up our environment and install the necessary dependencies. If you don't have `uv` installed, you can follow the installation instructions from the [uv documentation](https://docs.astral.sh/uv/getting-started/installation/).
88

9-
| Notebook | Description |
10-
|---------------------------------------------------|----------------------------------------------------------------------------------|
11-
| [1-the-basics.ipynb](./intro-tutorials/1-the-basics.ipynb) | Learn the basics of Data Designer by generating a simple product review dataset |
12-
| [2-structured-outputs-and-jinja-expressions.ipynb](./intro-tutorials/2-structured-outputs-and-jinja-expressions.ipynb) | Explore advanced data generation using structured outputs and Jinja expressions |
13-
| [3-seeding-with-a-dataset.ipynb](./intro-tutorials/3-seeding-with-a-dataset.ipynb) | Discover how to seed synthetic data generation with an external dataset |
14-
| [4-custom-model-configs.ipynb](./intro-tutorials/4-custom-model-configs.ipynb) | Master creating and using custom model configurations |
9+
Once you have `uv` installed, be sure you are in the `Nemo-Data-Designer` directory and run the following command:
1510

16-
### 🎯 Advanced Tutorials
11+
```bash
12+
uv sync
13+
```
1714

18-
| Notebook | Domain | Description |
19-
|---------------------------------------------------|---------------------|-----------------------------------------------------------------|
20-
| [person-sampler-tutorial.ipynb](./advanced/person-samplers/person-sampler-tutorial.ipynb) | Persona Samplers | Generate realistic personas using the person sampler |
21-
| [clinical-trials.ipynb](./advanced/healthcare-datasets/clinical-trials.ipynb) | Healthcare | Build synthetic clinical trial datasets with realistic PII for testing data protection |
22-
| [insurance-claims.ipynb](./advanced/healthcare-datasets/insurance-claims.ipynb) | Healthcare | Create synthetic insurance claims datasets with realistic claim data and processing information |
23-
| [physician-notes-with-realistic-personal-details.ipynb](./advanced/healthcare-datasets/physician-notes-with-realistic-personal-details.ipynb) | Healthcare | Generate realistic patient data and physician notes with embedded personal information |
24-
| [w2-dataset.ipynb](./advanced/forms/w2-dataset.ipynb) | Forms & Documents | Generate synthetic W-2 tax form datasets with realistic employee and employer information |
25-
| [multi-turn-conversation.ipynb](./advanced/multi-turn-chat/multi-turn-conversation.ipynb) | Conversational AI | Build synthetic conversational data with realistic person details and multi-turn dialogues |
26-
| [visual-question-answering-using-vlm.ipynb](./advanced/multimodal/visual-question-answering-using-vlm.ipynb) | Multimodal | Create visual question answering datasets using Vision Language Models |
27-
| [product-question-answer-generator.ipynb](./advanced/qa-generation/product-question-answer-generator.ipynb) | Q&A Generation | Build product information datasets with corresponding questions and answers |
28-
| [generate-rag-evaluation-dataset.ipynb](./advanced/rag-examples/generate-rag-evaluation-dataset.ipynb) | RAG & Retrieval | Generate diverse RAG evaluation datasets for testing retrieval-augmented generation systems |
29-
| [reasoning-traces.ipynb](./advanced/reasoning/reasoning-traces.ipynb) | Reasoning | Build synthetic reasoning traces to demonstrate step-by-step problem-solving processes |
30-
| [text-to-python.ipynb](./advanced/text-to-code/text-to-python.ipynb) | Text-to-Code | Generate Python code from natural language instructions with validation and evaluation |
31-
| [text-to-python-evol.ipynb](./advanced/text-to-code/text-to-python-evol.ipynb) | Text-to-Code | Build advanced Python code generation with evolutionary improvements and iterative refinement |
32-
| [text-to-sql.ipynb](./advanced/text-to-code/text-to-sql.ipynb) | Text-to-Code | Create SQL queries from natural language descriptions with validation and testing |
15+
This will create a virtual environment and install the necessary dependencies. Activate the virtual environment by running the following command:
16+
17+
```bash
18+
source .venv/bin/activate
19+
```
20+
21+
Be sure to select this virtual environment as your kernel when running the notebooks.
3322

3423
## 🚀 Deploying the NeMo Data Designer Microservice
3524

@@ -49,20 +38,32 @@ Alternatively, you can deploy the NeMo Data Designer microservice locally via Do
4938

5039
To run the tutorial notebooks in the [advanced](./advanced/), you will need to have NeMo Data Designer deployed locally. Please see the [deployment guide](http://docs.nvidia.com/nemo/microservices/latest/set-up/deploy-as-microservices/data-designer/docker-compose.html) for more details.
5140

52-
## 📦 Set Up the Environment
5341

54-
We will use the `uv` package manager to set up our environment and install the necessary dependencies. If you don't have `uv` installed, you can follow the installation instructions from the [uv documentation](https://docs.astral.sh/uv/getting-started/installation/).
42+
## 📚 Tutorial Directory
5543

56-
Once you have `uv` installed, be sure you are in the `Nemo-Data-Designer` directory and run the following command:
57-
58-
```bash
59-
uv sync
60-
```
44+
### 🚀 Intro Tutorials
6145

62-
This will create a virtual environment and install the necessary dependencies. Activate the virtual environment by running the following command:
46+
| Notebook | Description |
47+
|---------------------------------------------------|----------------------------------------------------------------------------------|
48+
| [1-the-basics.ipynb](./intro-tutorials/1-the-basics.ipynb) | Learn the basics of Data Designer by generating a simple product review dataset |
49+
| [2-structured-outputs-and-jinja-expressions.ipynb](./intro-tutorials/2-structured-outputs-and-jinja-expressions.ipynb) | Explore advanced data generation using structured outputs and Jinja expressions |
50+
| [3-seeding-with-a-dataset.ipynb](./intro-tutorials/3-seeding-with-a-dataset.ipynb) | Discover how to seed synthetic data generation with an external dataset |
51+
| [4-custom-model-configs.ipynb](./intro-tutorials/4-custom-model-configs.ipynb) | Master creating and using custom model configurations |
6352

64-
```bash
65-
source .venv/bin/activate
66-
```
53+
### 🎯 Advanced Tutorials
6754

68-
Be sure to select this virtual environment as your kernel when running the notebooks.
55+
| Notebook | Domain | Description |
56+
|---------------------------------------------------|---------------------|-----------------------------------------------------------------|
57+
| [person-sampler-tutorial.ipynb](./advanced/person-samplers/person-sampler-tutorial.ipynb) | Persona Samplers | Generate realistic personas using the person sampler |
58+
| [clinical-trials.ipynb](./advanced/healthcare-datasets/clinical-trials.ipynb) | Healthcare | Build synthetic clinical trial datasets with realistic PII for testing data protection |
59+
| [insurance-claims.ipynb](./advanced/healthcare-datasets/insurance-claims.ipynb) | Healthcare | Create synthetic insurance claims datasets with realistic claim data and processing information |
60+
| [physician-notes-with-realistic-personal-details.ipynb](./advanced/healthcare-datasets/physician-notes-with-realistic-personal-details.ipynb) | Healthcare | Generate realistic patient data and physician notes with embedded personal information |
61+
| [w2-dataset.ipynb](./advanced/forms/w2-dataset.ipynb) | Forms & Documents | Generate synthetic W-2 tax form datasets with realistic employee and employer information |
62+
| [multi-turn-conversation.ipynb](./advanced/multi-turn-chat/multi-turn-conversation.ipynb) | Conversational AI | Build synthetic conversational data with realistic person details and multi-turn dialogues |
63+
| [visual-question-answering-using-vlm.ipynb](./advanced/multimodal/visual-question-answering-using-vlm.ipynb) | Multimodal | Create visual question answering datasets using Vision Language Models |
64+
| [product-question-answer-generator.ipynb](./advanced/qa-generation/product-question-answer-generator.ipynb) | Q&A Generation | Build product information datasets with corresponding questions and answers |
65+
| [generate-rag-evaluation-dataset.ipynb](./advanced/rag-examples/generate-rag-evaluation-dataset.ipynb) | RAG & Retrieval | Generate diverse RAG evaluation datasets for testing retrieval-augmented generation systems |
66+
| [reasoning-traces.ipynb](./advanced/reasoning/reasoning-traces.ipynb) | Reasoning | Build synthetic reasoning traces to demonstrate step-by-step problem-solving processes |
67+
| [text-to-python.ipynb](./advanced/text-to-code/text-to-python.ipynb) | Text-to-Code | Generate Python code from natural language instructions with validation and evaluation |
68+
| [text-to-python-evol.ipynb](./advanced/text-to-code/text-to-python-evol.ipynb) | Text-to-Code | Build advanced Python code generation with evolutionary improvements and iterative refinement |
69+
| [text-to-sql.ipynb](./advanced/text-to-code/text-to-sql.ipynb) | Text-to-Code | Create SQL queries from natural language descriptions with validation and testing |

0 commit comments

Comments
 (0)