File tree Expand file tree Collapse file tree 1 file changed +1
-6
lines changed
Expand file tree Collapse file tree 1 file changed +1
-6
lines changed Original file line number Diff line number Diff line change 1616# This is a simple standalone implementation showing rag pipeline using Nvidia AI Foundational models.
1717# It uses a simple Streamlit UI and one file implementation of a minimalistic RAG pipeline.
1818
19- ############################################
20- # Component #1 - Document Loader
21- ############################################
22-
2319import streamlit as st
2420import os
2521from langchain_nvidia_ai_endpoints import ChatNVIDIA , NVIDIAEmbeddings
5046
5147# Component #2 - Embedding Model and LLM
5248llm = ChatNVIDIA (model = "meta/llama3-70b-instruct" )
53- document_embedder = NVIDIAEmbeddings (model = "NV-Embed-QA" , model_type = "passage" )
54- #query_embedder = NVIDIAEmbeddings(model="NV-Embed-QA", model_type="query")
49+ document_embedder = NVIDIAEmbeddings (model = "nvidia/nv-embedqa-e5-v5" , model_type = "passage" )
5550
5651# Component #3 - Vector Database Store
5752with st .sidebar :
You can’t perform that action at this time.
0 commit comments