@@ -236,7 +236,10 @@ def __getitem__(self, i) -> dict[str, torch.Tensor]:
236236
237237
238238def make_eagle_supervised_data_module (
239- tokenizer : transformers .PreTrainedTokenizer , data_args , use_offline_training : bool
239+ tokenizer : transformers .PreTrainedTokenizer ,
240+ data_args ,
241+ use_offline_training : bool ,
242+ pad_length = None ,
240243) -> dict :
241244 """Make dataset and collator for supervised fine-tuning.
242245
@@ -303,7 +306,7 @@ def make_eagle_supervised_data_module(
303306 train_dataset = dataset_cls (data_json [: int (len (data_json ) * 0.95 )], tokenizer = tokenizer )
304307 eval_dataset = dataset_cls (data_json [int (len (data_json ) * 0.95 ) :], tokenizer = tokenizer )
305308
306- data_collator = DataCollatorWithPadding ()
309+ data_collator = DataCollatorWithPadding (pad_length = pad_length )
307310
308311 return {
309312 "train_dataset" : train_dataset ,
@@ -313,6 +316,9 @@ def make_eagle_supervised_data_module(
313316
314317
315318class DataCollatorWithPadding :
319+ def __init__ (self , pad_length = None ):
320+ self .pad_length = pad_length
321+
316322 def paddingtensor2d (self , intensors , length ):
317323 n , dim = intensors .shape
318324 padding_tensor = torch .zeros (length - n , dim , dtype = intensors .dtype )
@@ -325,7 +331,11 @@ def paddingtensor(self, intensors, length):
325331 return outtensors
326332
327333 def __call__ (self , features : list [dict [str , Any ]]) -> dict [str , Any ]:
328- max_length = max (item ["input_ids" ].shape [0 ] for item in features )
334+ max_length = (
335+ self .pad_length
336+ if self .pad_length is not None
337+ else max (item ["input_ids" ].shape [0 ] for item in features )
338+ )
329339 batch_input_ids = torch .stack (
330340 [self .paddingtensor (item ["input_ids" ], max_length ) for item in features ]
331341 )
@@ -357,7 +367,11 @@ def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
357367 raise ValueError ("No kwargs found in batch features. Offline data required." )
358368
359369 features = [item ["kwargs" ]["base_model_outputs" ] for item in features ]
360- max_hs_length = max (item ["base_model_hidden_states" ].shape [0 ] for item in features )
370+ max_hs_length = (
371+ max (item ["base_model_hidden_states" ].shape [0 ] for item in features )
372+ if self .pad_length is None
373+ else self .pad_length
374+ )
361375
362376 batch_hidden_states = torch .stack (
363377 [
0 commit comments