|
| 1 | +# Copyright (c) 2026, NVIDIA CORPORATION. All rights reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +""" |
| 15 | +Client-side training script for BraTS18 using NVFlare Client API. |
| 16 | +""" |
| 17 | +import argparse |
| 18 | +import copy |
| 19 | +import os |
| 20 | +from typing import Sequence, Tuple |
| 21 | + |
| 22 | +import numpy as np |
| 23 | +import torch |
| 24 | +import torch.optim as optim |
| 25 | +from model import BratsSegResNet |
| 26 | +from monai.data import CacheDataset, DataLoader, Dataset, load_decathlon_datalist |
| 27 | +from monai.inferers import SlidingWindowInferer |
| 28 | +from monai.losses import DiceLoss |
| 29 | +from monai.metrics import DiceMetric |
| 30 | +from monai.transforms import ( |
| 31 | + Activations, |
| 32 | + AsDiscrete, |
| 33 | + Compose, |
| 34 | + ConvertToMultiChannelBasedOnBratsClassesd, |
| 35 | + DivisiblePadd, |
| 36 | + EnsureChannelFirstd, |
| 37 | + LoadImaged, |
| 38 | + NormalizeIntensityd, |
| 39 | + Orientationd, |
| 40 | + RandFlipd, |
| 41 | + RandScaleIntensityd, |
| 42 | + RandShiftIntensityd, |
| 43 | + RandSpatialCropd, |
| 44 | + Spacingd, |
| 45 | +) |
| 46 | + |
| 47 | +import nvflare.client as flare |
| 48 | +from nvflare.app_opt.pt.fedproxloss import PTFedProxLoss |
| 49 | +from nvflare.client.tracking import SummaryWriter |
| 50 | + |
| 51 | + |
| 52 | +def parse_args(): |
| 53 | + parser = argparse.ArgumentParser(description="BraTS18 client training with NVFlare Client API.") |
| 54 | + parser.add_argument("--aggregation_epochs", type=int, default=1, help="Local epochs per round.") |
| 55 | + parser.add_argument("--learning_rate", type=float, default=1e-4) |
| 56 | + parser.add_argument("--fedproxloss_mu", type=float, default=0.0) |
| 57 | + parser.add_argument("--cache_dataset", type=float, default=0.0) |
| 58 | + parser.add_argument("--dataset_base_dir", type=str, required=True) |
| 59 | + parser.add_argument("--datalist_json_path", type=str, required=True) |
| 60 | + parser.add_argument( |
| 61 | + "--roi_size", |
| 62 | + type=int, |
| 63 | + nargs=3, |
| 64 | + default=(224, 224, 144), |
| 65 | + metavar=("X", "Y", "Z"), |
| 66 | + ) |
| 67 | + parser.add_argument( |
| 68 | + "--infer_roi_size", |
| 69 | + type=int, |
| 70 | + nargs=3, |
| 71 | + default=(240, 240, 160), |
| 72 | + metavar=("X", "Y", "Z"), |
| 73 | + ) |
| 74 | + parser.add_argument("--centralized", action="store_true", help="Use all data for centralized training") |
| 75 | + return parser.parse_args() |
| 76 | + |
| 77 | + |
| 78 | +def custom_client_datalist_json_path(datalist_json_path: str, client_id: str, centralized: bool = False) -> str: |
| 79 | + """Customize datalist_json_path for each client. |
| 80 | +
|
| 81 | + Args: |
| 82 | + datalist_json_path: Root path containing all json files |
| 83 | + client_id: Client identifier (e.g., site-1, site-2, etc.) |
| 84 | + centralized: If True, use site-All.json for centralized training with all data |
| 85 | +
|
| 86 | + Returns: |
| 87 | + Path to the appropriate datalist json file |
| 88 | + """ |
| 89 | + if centralized: |
| 90 | + # Use site-All.json for centralized training with all data |
| 91 | + all_data_path = os.path.join(datalist_json_path, "site-All.json") |
| 92 | + if os.path.exists(all_data_path): |
| 93 | + return all_data_path |
| 94 | + return os.path.join(datalist_json_path, client_id + ".json") |
| 95 | + |
| 96 | + |
| 97 | +def build_dataloaders( |
| 98 | + *, |
| 99 | + client_id: str, |
| 100 | + cache_rate: float, |
| 101 | + dataset_base_dir: str, |
| 102 | + datalist_json_path: str, |
| 103 | + roi_size: Sequence[int], |
| 104 | + infer_roi_size: Sequence[int], |
| 105 | + centralized: bool = False, |
| 106 | +) -> Tuple[DataLoader, DataLoader, SlidingWindowInferer, Compose, DiceMetric]: |
| 107 | + datalist_json_path = custom_client_datalist_json_path(datalist_json_path, client_id, centralized) |
| 108 | + |
| 109 | + print(f"[{client_id}] Loading datalist from: {datalist_json_path}") |
| 110 | + |
| 111 | + train_list = load_decathlon_datalist( |
| 112 | + data_list_file_path=datalist_json_path, |
| 113 | + is_segmentation=True, |
| 114 | + data_list_key="training", |
| 115 | + base_dir=dataset_base_dir, |
| 116 | + ) |
| 117 | + valid_list = load_decathlon_datalist( |
| 118 | + data_list_file_path=datalist_json_path, |
| 119 | + is_segmentation=True, |
| 120 | + data_list_key="validation", |
| 121 | + base_dir=dataset_base_dir, |
| 122 | + ) |
| 123 | + |
| 124 | + print(f"[{client_id}] Training samples: {len(train_list)}, Validation samples: {len(valid_list)}") |
| 125 | + |
| 126 | + transform_train = Compose( |
| 127 | + [ |
| 128 | + LoadImaged(keys=["image", "label"]), |
| 129 | + EnsureChannelFirstd(keys="image"), |
| 130 | + ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), |
| 131 | + Spacingd(keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest")), |
| 132 | + Orientationd(keys=["image", "label"], axcodes="RAS"), |
| 133 | + RandSpatialCropd(keys=["image", "label"], roi_size=roi_size, random_size=False), |
| 134 | + RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0), |
| 135 | + RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=1), |
| 136 | + RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=2), |
| 137 | + NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), |
| 138 | + RandScaleIntensityd(keys="image", factors=0.1, prob=1.0), |
| 139 | + RandShiftIntensityd(keys="image", offsets=0.1, prob=1.0), |
| 140 | + ] |
| 141 | + ) |
| 142 | + transform_valid = Compose( |
| 143 | + [ |
| 144 | + LoadImaged(keys=["image", "label"]), |
| 145 | + EnsureChannelFirstd(keys="image"), |
| 146 | + ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), |
| 147 | + Spacingd(keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest")), |
| 148 | + DivisiblePadd(keys=["image", "label"], k=32), |
| 149 | + Orientationd(keys=["image", "label"], axcodes="RAS"), |
| 150 | + NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), |
| 151 | + ] |
| 152 | + ) |
| 153 | + |
| 154 | + if cache_rate > 0.0: |
| 155 | + train_dataset = CacheDataset(data=train_list, transform=transform_train, cache_rate=cache_rate, num_workers=1) |
| 156 | + valid_dataset = CacheDataset(data=valid_list, transform=transform_valid, cache_rate=cache_rate, num_workers=1) |
| 157 | + else: |
| 158 | + train_dataset = Dataset(data=train_list, transform=transform_train) |
| 159 | + valid_dataset = Dataset(data=valid_list, transform=transform_valid) |
| 160 | + |
| 161 | + train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=1) |
| 162 | + valid_loader = DataLoader(valid_dataset, batch_size=1, shuffle=False, num_workers=1) |
| 163 | + |
| 164 | + inferer = SlidingWindowInferer(roi_size=infer_roi_size, sw_batch_size=1, overlap=0.5) |
| 165 | + transform_post = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) |
| 166 | + valid_metric = DiceMetric(include_background=True, reduction="mean") |
| 167 | + |
| 168 | + return train_loader, valid_loader, inferer, transform_post, valid_metric |
| 169 | + |
| 170 | + |
| 171 | +def validate(model, valid_loader, inferer, transform_post, valid_metric, device): |
| 172 | + model.eval() |
| 173 | + with torch.no_grad(): |
| 174 | + metric = 0.0 |
| 175 | + ct = 0 |
| 176 | + for batch_data in valid_loader: |
| 177 | + val_images = batch_data["image"].to(device) |
| 178 | + val_labels = batch_data["label"].to(device) |
| 179 | + val_outputs = inferer(val_images, model) |
| 180 | + val_outputs = transform_post(val_outputs) |
| 181 | + metric_score = valid_metric(y_pred=val_outputs, y=val_labels) |
| 182 | + for sub_region in range(3): |
| 183 | + metric_score_single = metric_score[0][sub_region].item() |
| 184 | + if not np.isnan(metric_score_single): |
| 185 | + metric += metric_score_single |
| 186 | + ct += 1 |
| 187 | + if ct == 0: |
| 188 | + raise ValueError("No valid validation metrics computed. Check validation dataset and data preprocessing.") |
| 189 | + return metric / ct |
| 190 | + |
| 191 | + |
| 192 | +def main(): |
| 193 | + args = parse_args() |
| 194 | + |
| 195 | + flare.init() |
| 196 | + sys_info = flare.system_info() |
| 197 | + client_name = sys_info["site_name"] |
| 198 | + summary_writer = SummaryWriter() |
| 199 | + |
| 200 | + train_loader, valid_loader, inferer, transform_post, valid_metric = build_dataloaders( |
| 201 | + client_id=client_name, |
| 202 | + cache_rate=args.cache_dataset, |
| 203 | + dataset_base_dir=args.dataset_base_dir, |
| 204 | + datalist_json_path=args.datalist_json_path, |
| 205 | + roi_size=args.roi_size, |
| 206 | + infer_roi_size=args.infer_roi_size, |
| 207 | + centralized=args.centralized, |
| 208 | + ) |
| 209 | + |
| 210 | + device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
| 211 | + model = BratsSegResNet().to(device) |
| 212 | + optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=1e-5) |
| 213 | + criterion = DiceLoss(smooth_nr=0, smooth_dr=1e-5, squared_pred=True, to_onehot_y=False, sigmoid=True) |
| 214 | + criterion_prox = PTFedProxLoss(mu=args.fedproxloss_mu) if args.fedproxloss_mu > 0 else None |
| 215 | + |
| 216 | + while flare.is_running(): |
| 217 | + input_model = flare.receive() |
| 218 | + model.load_state_dict(input_model.params, strict=True) |
| 219 | + model.to(device) |
| 220 | + |
| 221 | + global_metric = validate(model, valid_loader, inferer, transform_post, valid_metric, device) |
| 222 | + summary_writer.add_scalar("val_metric_global_model", global_metric, input_model.current_round) |
| 223 | + |
| 224 | + model_global = None |
| 225 | + if args.fedproxloss_mu > 0: |
| 226 | + model_global = copy.deepcopy(model) |
| 227 | + for param in model_global.parameters(): |
| 228 | + param.requires_grad = False |
| 229 | + |
| 230 | + steps_per_epoch = len(train_loader) |
| 231 | + total_steps = steps_per_epoch * args.aggregation_epochs |
| 232 | + |
| 233 | + for epoch in range(args.aggregation_epochs): |
| 234 | + model.train() |
| 235 | + running_loss = 0.0 |
| 236 | + for batch_data in train_loader: |
| 237 | + inputs = batch_data["image"].to(device) |
| 238 | + labels = batch_data["label"].to(device) |
| 239 | + outputs = model(inputs) |
| 240 | + loss = criterion(outputs, labels) |
| 241 | + if args.fedproxloss_mu > 0: |
| 242 | + loss += criterion_prox(model, model_global) |
| 243 | + optimizer.zero_grad() |
| 244 | + loss.backward() |
| 245 | + optimizer.step() |
| 246 | + running_loss += loss.item() |
| 247 | + |
| 248 | + if len(train_loader) == 0: |
| 249 | + raise ValueError("Training data loader is empty. Check dataset preparation and datalist configuration.") |
| 250 | + avg_loss = running_loss / len(train_loader) |
| 251 | + global_step = input_model.current_round * total_steps + epoch |
| 252 | + summary_writer.add_scalar("train_loss", avg_loss, global_step) |
| 253 | + |
| 254 | + # Send trained model weights (API will compute diff automatically with TransferType.DIFF) |
| 255 | + output_model = flare.FLModel( |
| 256 | + params=model.cpu().state_dict(), |
| 257 | + metrics={"val_dice": global_metric}, |
| 258 | + meta={"NUM_STEPS_CURRENT_ROUND": total_steps}, |
| 259 | + ) |
| 260 | + flare.send(output_model) |
| 261 | + |
| 262 | + |
| 263 | +if __name__ == "__main__": |
| 264 | + main() |
0 commit comments