Skip to content

Commit c232ffd

Browse files
authored
[None][doc] Replace the relative links with absolute links in README.md. (#8995)
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
1 parent d8ea0b9 commit c232ffd

File tree

1 file changed

+17
-17
lines changed

1 file changed

+17
-17
lines changed

README.md

Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -10,51 +10,51 @@ state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.<
1010
[![python](https://img.shields.io/badge/python-3.10-green)](https://www.python.org/downloads/release/python-31012/)
1111
[![cuda](https://img.shields.io/badge/cuda-13.0.0-green)](https://developer.nvidia.com/cuda-downloads)
1212
[![trt](https://img.shields.io/badge/TRT-10.13.2-green)](https://developer.nvidia.com/tensorrt)
13-
[![version](https://img.shields.io/badge/release-1.2.0rc3-green)](./tensorrt_llm/version.py)
14-
[![license](https://img.shields.io/badge/license-Apache%202-blue)](./LICENSE)
13+
[![version](https://img.shields.io/badge/release-1.2.0rc3-green)](https://github.com/NVIDIA/TensorRT-LLM/blob/main/tensorrt_llm/version.py)
14+
[![license](https://img.shields.io/badge/license-Apache%202-blue)](https://github.com/NVIDIA/TensorRT-LLM/blob/main/LICENSE)
1515

16-
[Architecture](./docs/source/torch/arch_overview.md)&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;[Performance](./docs/source/performance/perf-overview.md)&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;[Examples](https://nvidia.github.io/TensorRT-LLM/quick-start-guide.html)&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;[Documentation](https://nvidia.github.io/TensorRT-LLM/)&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;[Roadmap](https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap)
16+
[Architecture](https://nvidia.github.io/TensorRT-LLM/developer-guide/overview.html)&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;[Performance](https://nvidia.github.io/TensorRT-LLM/developer-guide/perf-overview.html)&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;[Examples](https://nvidia.github.io/TensorRT-LLM/quick-start-guide.html)&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;[Documentation](https://nvidia.github.io/TensorRT-LLM/)&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;[Roadmap](https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap)
1717

1818
---
1919
<div align="left">
2020

2121
## Tech Blogs
2222

2323
* [10/13] Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)
24-
[➡️ link](./docs/source/blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.md)
24+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html)
2525

2626
* [09/26] Inference Time Compute Implementation in TensorRT LLM
27-
[➡️ link](./docs/source/blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.md)
27+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html)
2828

2929
* [09/19] Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly
30-
[➡️ link](./docs/source/blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.md)
30+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html)
3131

3232
* [08/29] ADP Balance Strategy
33-
[➡️ link](./docs/source/blogs/tech_blog/blog10_ADP_Balance_Strategy.md)
33+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog10_ADP_Balance_Strategy.html)
3434

3535
* [08/05] Running a High-Performance GPT-OSS-120B Inference Server with TensorRT LLM
36-
[➡️ link](./docs/source/blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.md)
36+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html)
3737

3838
* [08/01] Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)
39-
[➡️ link](./docs/source/blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.md)
39+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html)
4040

4141
* [07/26] N-Gram Speculative Decoding in TensorRT LLM
42-
[➡️ link](./docs/source/blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.md)
42+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html)
4343

4444
* [06/19] Disaggregated Serving in TensorRT LLM
45-
[➡️ link](./docs/source/blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.md)
45+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html)
4646

4747
* [06/05] Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)
48-
[➡️ link](./docs/source/blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.md)
48+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html)
4949

5050
* [05/30] Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers
51-
[➡️ link](./docs/source/blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.md)
51+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html)
5252

5353
* [05/23] DeepSeek R1 MTP Implementation and Optimization
54-
[➡️ link](./docs/source/blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.md)
54+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html)
5555

5656
* [05/16] Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs
57-
[➡️ link](./docs/source/blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.md)
57+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html)
5858

5959
## Latest News
6060
* [08/05] 🌟 TensorRT LLM delivers Day-0 support for OpenAI's latest open-weights models: GPT-OSS-120B [➡️ link](https://huggingface.co/openai/gpt-oss-120b) and GPT-OSS-20B [➡️ link](https://huggingface.co/openai/gpt-oss-20b)
@@ -63,11 +63,11 @@ state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.<
6363
* [05/22] Blackwell Breaks the 1,000 TPS/User Barrier With Meta’s Llama 4 Maverick
6464
[➡️ link](https://developer.nvidia.com/blog/blackwell-breaks-the-1000-tps-user-barrier-with-metas-llama-4-maverick/)
6565
* [04/10] TensorRT LLM DeepSeek R1 performance benchmarking best practices now published.
66-
[➡️ link](./docs/source/blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.md)
66+
[➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html)
6767

6868
* [04/05] TensorRT LLM can run Llama 4 at over 40,000 tokens per second on B200 GPUs!
6969

70-
![L4_perf](./docs/source/media/l4_launch_perf.png)
70+
![L4_perf](https://raw.githubusercontent.com/NVIDIA/TensorRT-LLM/main/docs/source/media/l4_launch_perf.png)
7171

7272

7373
* [03/22] TensorRT LLM is now fully open-source, with developments moved to GitHub!

0 commit comments

Comments
 (0)