Skip to content

[Performance]: b200x8 deepseek-ai/DeepSeek-V3.2-Exp max perfΒ #10278

@evgeniiperepelkin

Description

@evgeniiperepelkin

Proposal to improve performance

No response

Report of performance regression

Hi! Do you have any ideas on how to increase TPS on B200 Γ—8?

cuda_graph_config:
  enable_padding: true
  batch_sizes: [1, 2, 4, 8, 16, 32, 64, 128, 256]
moe_config:
  backend: DEEPGEMM
  max_num_tokens: 32768
kv_cache_config:
  enable_block_reuse: false
  dtype: fp8
  tokens_per_block: 64
  free_gpu_memory_fraction: 0.55
enable_chunked_prefill: true
stream_interval: 50
batch_wait_timeout_ms: 20
enable_attention_dp: true
attention_dp_config:
  batching_wait_iters: 0
  enable_balance: true
  timeout_iters: 60
  trtllm-serve deepseek-ai/DeepSeek-V3.2-Exp \
    --backend pytorch \
    --max_batch_size 256 \
    --max_num_tokens 32768 \
    --max_seq_len 32768 \
    --tp_size 8 \
    --ep_size 8 \
    --pp_size 1 \
    --tool_parser deepseek_v32 \
    --extra_llm_api_options /app/extra-llm-api-config.yml \
    --host 0.0.0.0 \
    --port 12345

Misc discussion on performance

No response

Your current environment (if you think it is necessary)

System Information:

  • OS: 24.04
  • Python version:
  • CUDA version: 1
  • GPU model(s):
  • Driver version:
  • TensorRT version:
  • PyTorch version:
  • TensorRT-LLM version:

Detailed output:

Wed Dec 24 12:49:44 2025       
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 580.95.05              Driver Version: 580.95.05      CUDA Version: 13.0     |
+-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA B200                    On  |   00000000:05:00.0 Off |                    0 |
| N/A   33C    P0            192W / 1000W |  166593MiB / 183359MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA B200                    On  |   00000000:06:00.0 Off |                    0 |
| N/A   35C    P0            196W / 1000W |  156996MiB / 183359MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   2  NVIDIA B200                    On  |   00000000:07:00.0 Off |                    0 |
| N/A   34C    P0            192W / 1000W |  156996MiB / 183359MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   3  NVIDIA B200                    On  |   00000000:08:00.0 Off |                    0 |
| N/A   32C    P0            194W / 1000W |  156996MiB / 183359MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   4  NVIDIA B200                    On  |   00000000:09:00.0 Off |                    0 |
| N/A   33C    P0            193W / 1000W |  156996MiB / 183359MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   5  NVIDIA B200                    On  |   00000000:0A:00.0 Off |                    0 |
| N/A   35C    P0            198W / 1000W |  156996MiB / 183359MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   6  NVIDIA B200                    On  |   00000000:0B:00.0 Off |                    0 |
| N/A   34C    P0            194W / 1000W |  156996MiB / 183359MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   7  NVIDIA B200                    On  |   00000000:0C:00.0 Off |                    0 |
| N/A   32C    P0            191W / 1000W |  156676MiB / 183359MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A          769002      C   /usr/bin/python                         686MiB |
|    0   N/A  N/A          770142      C   /usr/bin/python                       16588... |
|    1   N/A  N/A          770143      C   /usr/bin/python                       15698... |
|    2   N/A  N/A          770144      C   /usr/bin/python                       15698... |
|    3   N/A  N/A          770145      C   /usr/bin/python                       15698... |
|    4   N/A  N/A          770146      C   /usr/bin/python                       15698... |
|    5   N/A  N/A          770147      C   /usr/bin/python                       15698... |
|    6   N/A  N/A          770148      C   /usr/bin/python                       15698... |
|    7   N/A  N/A          770149      C   /usr/bin/python                       15666... |
+-----------------------------------------------------------------------------------------+
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Wed_Aug_20_01:58:59_PM_PDT_2025
Cuda compilation tools, release 13.0, V13.0.88
Build cuda_13.0.r13.0/compiler.36424714_0
python --version
pip show tensorrt_llm tensorrt torch
Python 3.12.3
Name: tensorrt_llm
Version: 1.2.0rc7
Summary: TensorRT LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and supports state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.
Home-page: https://github.com/NVIDIA/TensorRT-LLM
Author: NVIDIA Corporation
Author-email: 
License: Apache License 2.0
Location: /usr/local/lib/python3.12/dist-packages
Requires: accelerate, aenum, apache-tvm-ffi, backoff, blake3, blobfile, build, click, click_option_group, colored, cuda-python, datasets, diffusers, einops, etcd3, evaluate, fastapi, flashinfer-python, h5py, jsonschema, lark, llguidance, matplotlib, meson, mistral-common, mpi4py, mpmath, ninja, numexpr, numpy, nvidia-cuda-nvrtc, nvidia-cutlass-dsl, nvidia-ml-py, nvidia-modelopt, nvidia-nccl-cu13, nvtx, omegaconf, onnx, onnx_graphsurgeon, openai, openai-harmony, opencv-python-headless, optimum, ordered-set, pandas, partial_json_parser, patchelf, peft, pillow, plotly, polygraphy, prometheus_client, prometheus_fastapi_instrumentator, psutil, pulp, pydantic, pydantic-settings, pyzmq, sentencepiece, setuptools, soundfile, starlette, StrEnum, tensorrt, tiktoken, torch, torch-c-dlpack-ext, torchao, torchvision, transformers, triton, urllib3, uvicorn, wheel, xgrammar
Required-by: 
---
Name: tensorrt
Version: 10.13.3.9
Summary: A high performance deep learning inference library
Home-page: https://github.com/nvidia/tensorrt
Author: NVIDIA Corporation
Author-email: 
License: Proprietary
Location: /usr/local/lib/python3.12/dist-packages
Requires: 
Required-by: tensorrt_llm
---
Name: torch
Version: 2.9.0a0+145a3a7bda.nv25.10
Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration
Home-page: https://pytorch.org
Author: 
Author-email: PyTorch Team <[email protected]>
License: BSD-3-Clause
Location: /usr/local/lib/python3.12/dist-packages
Requires: filelock, fsspec, jinja2, networkx, setuptools, sympy, typing-extensions
Required-by: accelerate, flash_attn, flashinfer-python, lightning-thunder, nvidia-modelopt, nvidia-resiliency-ext, optimum, peft, tensorrt_llm, torch_c_dlpack_ext, torchprofile, torchvision, transformer_engine, xgrammar

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and checked the documentation and examples for answers to frequently asked questions.

Metadata

Metadata

Assignees

Labels

General perf<NV>Broad performance issues not specific to a particular componentPerformanceTRTLLM model inference speed, throughput, efficiency. Latency, benchmarks, regressions, opts.Pytorch<NV>Pytorch backend related issues

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions