@@ -236,7 +236,10 @@ def __getitem__(self, i) -> dict[str, torch.Tensor]:
236
236
237
237
238
238
def make_eagle_supervised_data_module (
239
- tokenizer : transformers .PreTrainedTokenizer , data_args , use_offline_training : bool
239
+ tokenizer : transformers .PreTrainedTokenizer ,
240
+ data_args ,
241
+ use_offline_training : bool ,
242
+ pad_length = None ,
240
243
) -> dict :
241
244
"""Make dataset and collator for supervised fine-tuning.
242
245
@@ -303,7 +306,7 @@ def make_eagle_supervised_data_module(
303
306
train_dataset = dataset_cls (data_json [: int (len (data_json ) * 0.95 )], tokenizer = tokenizer )
304
307
eval_dataset = dataset_cls (data_json [int (len (data_json ) * 0.95 ) :], tokenizer = tokenizer )
305
308
306
- data_collator = DataCollatorWithPadding ()
309
+ data_collator = DataCollatorWithPadding (pad_length = pad_length )
307
310
308
311
return {
309
312
"train_dataset" : train_dataset ,
@@ -313,6 +316,9 @@ def make_eagle_supervised_data_module(
313
316
314
317
315
318
class DataCollatorWithPadding :
319
+ def __init__ (self , pad_length = None ):
320
+ self .pad_length = pad_length
321
+
316
322
def paddingtensor2d (self , intensors , length ):
317
323
n , dim = intensors .shape
318
324
padding_tensor = torch .zeros (length - n , dim , dtype = intensors .dtype )
@@ -325,7 +331,11 @@ def paddingtensor(self, intensors, length):
325
331
return outtensors
326
332
327
333
def __call__ (self , features : list [dict [str , Any ]]) -> dict [str , Any ]:
328
- max_length = max (item ["input_ids" ].shape [0 ] for item in features )
334
+ max_length = (
335
+ self .pad_length
336
+ if self .pad_length is not None
337
+ else max (item ["input_ids" ].shape [0 ] for item in features )
338
+ )
329
339
batch_input_ids = torch .stack (
330
340
[self .paddingtensor (item ["input_ids" ], max_length ) for item in features ]
331
341
)
@@ -357,7 +367,11 @@ def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
357
367
raise ValueError ("No kwargs found in batch features. Offline data required." )
358
368
359
369
features = [item ["kwargs" ]["base_model_outputs" ] for item in features ]
360
- max_hs_length = max (item ["base_model_hidden_states" ].shape [0 ] for item in features )
370
+ max_hs_length = (
371
+ max (item ["base_model_hidden_states" ].shape [0 ] for item in features )
372
+ if self .pad_length is None
373
+ else self .pad_length
374
+ )
361
375
362
376
batch_hidden_states = torch .stack (
363
377
[
0 commit comments