Skip to content

Commit 82dc269

Browse files
committed
Change name
Signed-off-by: Jingyu Xin <[email protected]>
1 parent 0b202b9 commit 82dc269

File tree

2 files changed

+21
-21
lines changed

2 files changed

+21
-21
lines changed

CHANGELOG.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ Model Optimizer Changelog (Linux)
99
**New Features**
1010

1111
- Add flag ``op_types_to_exclude_fp16`` in ONNX quantization to exclude ops from being converted to FP16/BF16. Alternatively, for custom TensorRT ops, this can also be done by indicating ``'fp32'`` precision in ``trt_plugins_precision``.
12-
- Add LoRA mode support for MCore: ``mtpf.update_model(model, LORA_CFG)``.
12+
- Add LoRA mode support for MCore: ``mtpeft.update_model(model, LORA_CFG)``.
1313

1414
0.37 (2025-09-xx)
1515
^^^^^^^^^^^^^^^^^

tests/gpu/torch/peft/test_megatron_peft.py

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@
2020
skip_if_no_megatron()
2121

2222

23-
import modelopt.torch.peft as mtpf
23+
import modelopt.torch.peft as mtpeft
2424
import modelopt.torch.quantization as mtq
2525
from modelopt.torch.peft.lora.layer import LoRAModule
2626
from modelopt.torch.utils.plugins import megatron_prefill
@@ -184,7 +184,7 @@ def _test_forward_with_one_lora(lora_config, rank, size):
184184
prompt_tokens = torch.randint(0, model.vocab_size, (2, model.max_sequence_length)).cuda()
185185

186186
original_output = megatron_prefill(model, prompt_tokens)
187-
mtpf.update_model(model, lora_config)
187+
mtpeft.update_model(model, lora_config)
188188
lora_output = megatron_prefill(model, prompt_tokens)
189189
assert lora_output.shape == original_output.shape
190190
if lora_config == DEFAULT_LORA_CFG_RANDOM_INIT_TEST:
@@ -198,12 +198,12 @@ def _test_forward_with_one_lora(lora_config, rank, size):
198198
assert torch.allclose(lora_output, original_output, rtol=1e-5), (
199199
f"{lora_output}, {original_output}"
200200
)
201-
mtpf.disable_adapters(model)
201+
mtpeft.disable_adapters(model)
202202
lora_disabled_output = megatron_prefill(model, prompt_tokens)
203203
# Task: Since all LoRA layers are disabled, the output should
204204
# be identical to the original output.
205205
assert torch.allclose(lora_disabled_output, original_output, rtol=1e-5)
206-
mtpf.enable_adapters(model)
206+
mtpeft.enable_adapters(model)
207207
lora_reenabled_output = megatron_prefill(model, prompt_tokens)
208208
# Task: To verify that toggling LoRA layers from disabled
209209
# to enabled does not alter the output, the output should remain unchanged.
@@ -260,14 +260,14 @@ def _test_forward_with_two_loras(lora_config_1, lora_config_2, rank, size):
260260
prompt_tokens = torch.randint(0, model.vocab_size, (2, model.max_sequence_length)).cuda()
261261

262262
original_output = megatron_prefill(model, prompt_tokens)
263-
mtpf.update_model(model, lora_config_1)
263+
mtpeft.update_model(model, lora_config_1)
264264
# output from the first lora only
265265
lora_1_output = megatron_prefill(model, prompt_tokens)
266266

267-
mtpf.update_model(model, lora_config_2)
267+
mtpeft.update_model(model, lora_config_2)
268268

269-
mtpf.disable_adapters(model, adapters_to_disable=[lora_config_1["adapter_name"]])
270-
mtpf.enable_adapters(model, adapters_to_enable=[lora_config_2["adapter_name"]])
269+
mtpeft.disable_adapters(model, adapters_to_disable=[lora_config_1["adapter_name"]])
270+
mtpeft.enable_adapters(model, adapters_to_enable=[lora_config_2["adapter_name"]])
271271

272272
# output from the 2nd lora only
273273
lora_2_output = megatron_prefill(model, prompt_tokens)
@@ -276,14 +276,14 @@ def _test_forward_with_two_loras(lora_config_1, lora_config_2, rank, size):
276276
# Should not be the same
277277
assert not torch.allclose(lora_1_output, lora_2_output)
278278

279-
mtpf.enable_adapters(model, adapters_to_enable=[lora_config_1["adapter_name"]])
280-
mtpf.enable_adapters(model, adapters_to_enable=[lora_config_2["adapter_name"]])
279+
mtpeft.enable_adapters(model, adapters_to_enable=[lora_config_1["adapter_name"]])
280+
mtpeft.enable_adapters(model, adapters_to_enable=[lora_config_2["adapter_name"]])
281281
lora_all_output = megatron_prefill(model, prompt_tokens)
282282

283283
assert not torch.allclose(lora_all_output, lora_1_output)
284284
assert not torch.allclose(lora_all_output, lora_2_output)
285285

286-
mtpf.disable_adapters(model)
286+
mtpeft.disable_adapters(model)
287287
both_disabled_output = megatron_prefill(model, prompt_tokens)
288288
assert torch.allclose(both_disabled_output, original_output)
289289

@@ -318,7 +318,7 @@ def _test_attr_changes_with_one_lora(lora_config, rank, size):
318318
model = _gpt_model_provider(tp_size=1, hidden_size=hidden_size)
319319
prompt_tokens = torch.randint(0, model.vocab_size, (2, model.max_sequence_length)).cuda()
320320

321-
mtpf.update_model(model, lora_config)
321+
mtpeft.update_model(model, lora_config)
322322
lora_1_output = megatron_prefill(model, prompt_tokens)
323323

324324
for _, module in model.named_modules():
@@ -362,7 +362,7 @@ def _test_mcore_save_restore(lora_config, tmp_path, rank, size):
362362
).cuda()
363363
original_output_test = megatron_prefill(model_test, prompt_tokens)
364364

365-
mtpf.update_model(model_ref, lora_config)
365+
mtpeft.update_model(model_ref, lora_config)
366366

367367
lora_output_ref = megatron_prefill(model_ref, prompt_tokens)
368368

@@ -401,7 +401,7 @@ def _test_adapter_gradient_flow_freeze_base_model(lora_config, tmp_path, rank, s
401401
model = _gpt_model_provider(tp_size=size, hidden_size=hidden_size)
402402
prompt_tokens = torch.randint(0, model.vocab_size, (2, model.max_sequence_length)).cuda()
403403

404-
mtpf.update_model(model, lora_config)
404+
mtpeft.update_model(model, lora_config)
405405
model.train()
406406

407407
# Use a simple forward pass instead for grad check
@@ -453,7 +453,7 @@ def _test_adapter_gradient_flow_freeze_lora_model(lora_config, tmp_path, rank, s
453453
model = _gpt_model_provider(tp_size=size, hidden_size=hidden_size)
454454
prompt_tokens = torch.randint(0, model.vocab_size, (2, model.max_sequence_length)).cuda()
455455

456-
mtpf.update_model(model, local_cfg)
456+
mtpeft.update_model(model, local_cfg)
457457
model.train()
458458

459459
# Use a simple forward pass instead for grad check
@@ -504,7 +504,7 @@ def _test_adapter_gradient_flow(lora_config, tmp_path, rank, size):
504504
model = _gpt_model_provider(tp_size=size, hidden_size=hidden_size)
505505
prompt_tokens = torch.randint(0, model.vocab_size, (2, model.max_sequence_length)).cuda()
506506

507-
mtpf.update_model(model, lora_config)
507+
mtpeft.update_model(model, lora_config)
508508
model.train()
509509

510510
# Use a simple forward pass instead for grad check
@@ -555,7 +555,7 @@ def forward_func(mod):
555555
mtq.quantize(model, NVFP4_DEFAULT_CONFIG, forward_func)
556556

557557
# Then add the lora
558-
mtpf.update_model(model, lora_config)
558+
mtpeft.update_model(model, lora_config)
559559

560560
# Bypass the output layer
561561
for name, module in model.named_modules():
@@ -601,7 +601,7 @@ def _test_lora_then_quantize(lora_config, tmp_path, rank, size):
601601
model = _gpt_model_provider(tp_size=size, hidden_size=hidden_size)
602602
prompt_tokens = torch.randint(0, model.vocab_size, (2, model.max_sequence_length)).cuda()
603603

604-
mtpf.update_model(model, lora_config)
604+
mtpeft.update_model(model, lora_config)
605605
lora_output = megatron_prefill(model, prompt_tokens)
606606

607607
def forward_func(mod):
@@ -671,7 +671,7 @@ def forward_func(mod):
671671
_ = megatron_prefill(model_ref, prompt_tokens)
672672

673673
mtq.quantize(model_ref, NVFP4_DEFAULT_CONFIG, forward_func)
674-
mtpf.update_model(model_ref, lora_config)
674+
mtpeft.update_model(model_ref, lora_config)
675675

676676
quantize_lora_output_ref = megatron_prefill(model_ref, prompt_tokens)
677677

@@ -731,7 +731,7 @@ def _test_mcore_lora_then_quantize_save_restore(lora_config, tmp_path, rank, siz
731731
).cuda()
732732
original_output_test = megatron_prefill(model_test, prompt_tokens)
733733

734-
mtpf.update_model(model_ref, lora_config)
734+
mtpeft.update_model(model_ref, lora_config)
735735

736736
def forward_func(mod):
737737
_ = megatron_prefill(model_ref, prompt_tokens)

0 commit comments

Comments
 (0)