|
| 1 | +# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. |
| 2 | +# SPDX-License-Identifier: Apache-2.0 |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +"""Common utilities for sparse attention testing.""" |
| 17 | + |
| 18 | +import torch |
| 19 | +import torch.nn as nn |
| 20 | + |
| 21 | +import modelopt.torch.opt as mto |
| 22 | +import modelopt.torch.sparsity.attention_sparsity as sparse_attn |
| 23 | +from modelopt.torch.sparsity.attention_sparsity.nn.sparse_attention import SparseAttentionModule |
| 24 | + |
| 25 | + |
| 26 | +# Test models for sparse attention |
| 27 | +class SimpleAttentionModel(nn.Module): |
| 28 | + """Simple attention model for testing.""" |
| 29 | + |
| 30 | + def __init__(self, hidden_size=256, num_heads=8): |
| 31 | + super().__init__() |
| 32 | + self.hidden_size = hidden_size |
| 33 | + self.num_heads = num_heads |
| 34 | + self.attention = nn.MultiheadAttention( |
| 35 | + embed_dim=hidden_size, num_heads=num_heads, batch_first=True |
| 36 | + ) |
| 37 | + self.fc = nn.Linear(hidden_size, hidden_size) |
| 38 | + |
| 39 | + def forward(self, x): |
| 40 | + attn_output, _ = self.attention(x, x, x, need_weights=False) |
| 41 | + return self.fc(attn_output) |
| 42 | + |
| 43 | + @classmethod |
| 44 | + def get_input(cls, hidden_size=256, seq_len=10, batch_size=2): |
| 45 | + """Get input tensor for testing.""" |
| 46 | + return torch.randn(batch_size, seq_len, hidden_size) |
| 47 | + |
| 48 | + |
| 49 | +class SimpleTransformerEncoderLayer(nn.Module): |
| 50 | + """Simple TransformerEncoderLayer wrapper for testing.""" |
| 51 | + |
| 52 | + def __init__(self, d_model=128, nhead=4, dim_feedforward=256): |
| 53 | + super().__init__() |
| 54 | + self.d_model = d_model |
| 55 | + self.nhead = nhead |
| 56 | + self.layer = nn.TransformerEncoderLayer( |
| 57 | + d_model=d_model, |
| 58 | + nhead=nhead, |
| 59 | + dim_feedforward=dim_feedforward, |
| 60 | + batch_first=True, |
| 61 | + ) |
| 62 | + |
| 63 | + def forward(self, x): |
| 64 | + return self.layer(x) |
| 65 | + |
| 66 | + @classmethod |
| 67 | + def get_input(cls, d_model=128, seq_len=20, batch_size=2): |
| 68 | + """Get input tensor for testing.""" |
| 69 | + return torch.randn(batch_size, seq_len, d_model) |
| 70 | + |
| 71 | + |
| 72 | +class SimpleTransformerEncoder(nn.Module): |
| 73 | + """Simple TransformerEncoder wrapper for testing.""" |
| 74 | + |
| 75 | + def __init__(self, d_model=128, nhead=4, num_layers=2): |
| 76 | + super().__init__() |
| 77 | + self.d_model = d_model |
| 78 | + self.nhead = nhead |
| 79 | + self.encoder = nn.TransformerEncoder( |
| 80 | + nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, batch_first=True), |
| 81 | + num_layers=num_layers, |
| 82 | + ) |
| 83 | + |
| 84 | + def forward(self, x): |
| 85 | + return self.encoder(x) |
| 86 | + |
| 87 | + @classmethod |
| 88 | + def get_input(cls, d_model=128, seq_len=10, batch_size=2): |
| 89 | + """Get input tensor for testing.""" |
| 90 | + return torch.randn(batch_size, seq_len, d_model) |
| 91 | + |
| 92 | + |
| 93 | +# Test configurations |
| 94 | +FLASH_SOFTMAX_SKIP_DEFAULT_CFG = { |
| 95 | + "method": "flash_softmax_skip", |
| 96 | + "sparse_cfg": {"*attention*": {"threshold": 1e-4, "br": 128, "bc": 128, "enable": True}}, |
| 97 | +} |
| 98 | + |
| 99 | +FLASH_SOFTMAX_SKIP_PHASE_AWARE_CFG = { |
| 100 | + "method": "flash_softmax_skip", |
| 101 | + "sparse_cfg": { |
| 102 | + "*attention*": { |
| 103 | + "threshold": {"prefill": 1e-3, "decode": 1e-5}, |
| 104 | + "br": 128, |
| 105 | + "bc": 128, |
| 106 | + "enable": True, |
| 107 | + } |
| 108 | + }, |
| 109 | +} |
| 110 | + |
| 111 | +FLASH_SOFTMAX_SKIP_STATS_CFG = { |
| 112 | + "method": "flash_softmax_skip", |
| 113 | + "collect_stats": True, |
| 114 | + "sparse_cfg": { |
| 115 | + "*attention*": { |
| 116 | + "threshold": 1e-4, |
| 117 | + "br": 128, |
| 118 | + "bc": 128, |
| 119 | + "collect_stats": True, |
| 120 | + "enable": True, |
| 121 | + } |
| 122 | + }, |
| 123 | +} |
| 124 | + |
| 125 | +FLASH_SOFTMAX_SKIP_CALIBRATION_CFG = { |
| 126 | + "method": "flash_softmax_skip", |
| 127 | + "sparse_cfg": { |
| 128 | + "*attention*": { |
| 129 | + "br": 128, |
| 130 | + "bc": 128, |
| 131 | + "enable": True, |
| 132 | + "calibration": { |
| 133 | + "target_sparse_ratio": 0.5, |
| 134 | + "samples": 6, |
| 135 | + "max_seqlen": 1024, |
| 136 | + }, |
| 137 | + } |
| 138 | + }, |
| 139 | +} |
| 140 | + |
| 141 | + |
| 142 | +def get_test_configs(): |
| 143 | + """Get test configurations for parameterized tests. |
| 144 | +
|
| 145 | + Note: Calibration config excluded (requires GPU and real tokenizers). |
| 146 | + """ |
| 147 | + return [FLASH_SOFTMAX_SKIP_DEFAULT_CFG, FLASH_SOFTMAX_SKIP_PHASE_AWARE_CFG] |
| 148 | + |
| 149 | + |
| 150 | +def sparsify_model_and_forward(model, config, calib_data): |
| 151 | + """Apply sparse attention and run forward passes. |
| 152 | +
|
| 153 | + Args: |
| 154 | + model: Model to sparsify |
| 155 | + config: Sparse attention configuration |
| 156 | + calib_data: List of calibration data tensors |
| 157 | +
|
| 158 | + Returns: |
| 159 | + Sparsified model |
| 160 | + """ |
| 161 | + |
| 162 | + def forward_loop(model): |
| 163 | + for batch in calib_data: |
| 164 | + model(batch) |
| 165 | + |
| 166 | + # Apply sparse attention |
| 167 | + model = sparse_attn.sparsify(model, config, forward_loop=forward_loop) |
| 168 | + |
| 169 | + # Verify sparse attention modules were inserted |
| 170 | + assert any(isinstance(m, SparseAttentionModule) for m in model.modules()), ( |
| 171 | + "No sparse attention modules found" |
| 172 | + ) |
| 173 | + |
| 174 | + # Test forward passes |
| 175 | + model.eval() |
| 176 | + with torch.no_grad(): |
| 177 | + for batch in calib_data: |
| 178 | + output = model(batch) |
| 179 | + assert not torch.isnan(output).any(), "NaN in output" |
| 180 | + assert output is not None, "Output is None" |
| 181 | + |
| 182 | + return model |
| 183 | + |
| 184 | + |
| 185 | +def save_restore_test(model_cls, device, sparse_config): |
| 186 | + """Test save and restore of sparse attention state. |
| 187 | +
|
| 188 | + Args: |
| 189 | + model_cls: Model class to test |
| 190 | + device: Device to run on ('cpu' or 'cuda') |
| 191 | + sparse_config: Sparse attention configuration |
| 192 | + """ |
| 193 | + # Create and sparsify reference model |
| 194 | + model_sparse = model_cls().to(device) |
| 195 | + calib_data = [model_sparse.get_input().to(device) for _ in range(2)] |
| 196 | + |
| 197 | + sparsify_model_and_forward(model_sparse, sparse_config, calib_data) |
| 198 | + |
| 199 | + # Save state |
| 200 | + state_dict = mto.modelopt_state(model_sparse) |
| 201 | + |
| 202 | + # Restore to new model |
| 203 | + model_restored = model_cls().to(device) |
| 204 | + mto.restore_from_modelopt_state(model_restored, state_dict) |
| 205 | + model_restored.load_state_dict(model_sparse.state_dict()) |
| 206 | + |
| 207 | + # Verify outputs match |
| 208 | + test_input = calib_data[0] |
| 209 | + model_sparse.eval() |
| 210 | + model_restored.eval() |
| 211 | + |
| 212 | + with torch.no_grad(): |
| 213 | + output_sparse = model_sparse(test_input) |
| 214 | + output_restored = model_restored(test_input) |
| 215 | + |
| 216 | + assert torch.allclose(output_sparse, output_restored, atol=1e-6), ( |
| 217 | + "Restored model output doesn't match original" |
| 218 | + ) |
0 commit comments