|
| 1 | +# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. |
| 2 | +# SPDX-License-Identifier: Apache-2.0 |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import pytest |
| 17 | +import torch |
| 18 | + |
| 19 | +pytest.importorskip("transformers") |
| 20 | + |
| 21 | +from transformers import LlamaConfig, LlamaForCausalLM |
| 22 | + |
| 23 | +import modelopt.torch.quantization as mtq |
| 24 | +from modelopt.torch.export.quant_utils import pattern_fuse_prequant |
| 25 | + |
| 26 | + |
| 27 | +def get_tiny_llama(attention_heads=4, key_value_heads=4): |
| 28 | + """Create a tiny Llama model for testing.""" |
| 29 | + config = LlamaConfig( |
| 30 | + hidden_size=64, |
| 31 | + intermediate_size=128, |
| 32 | + num_hidden_layers=2, |
| 33 | + num_attention_heads=attention_heads, |
| 34 | + num_key_value_heads=key_value_heads, |
| 35 | + max_position_embeddings=128, |
| 36 | + vocab_size=256, |
| 37 | + ) |
| 38 | + return LlamaForCausalLM(config) |
| 39 | + |
| 40 | + |
| 41 | +@pytest.mark.parametrize( |
| 42 | + "quant_config", |
| 43 | + [ |
| 44 | + mtq.INT4_AWQ_CFG, |
| 45 | + mtq.NVFP4_AWQ_LITE_CFG, |
| 46 | + ], |
| 47 | +) |
| 48 | +@pytest.mark.parametrize( |
| 49 | + "attention_kv_heads_pair", |
| 50 | + [ |
| 51 | + (4, 4), # MHA |
| 52 | + (4, 2), # GQA |
| 53 | + (4, 1), # MQA |
| 54 | + ], |
| 55 | +) |
| 56 | +def test_pattern_fuse_prequant(quant_config, attention_kv_heads_pair): |
| 57 | + """Test pattern_fuse_prequant on modules from a tiny Llama model.""" |
| 58 | + model = get_tiny_llama(attention_kv_heads_pair[0], attention_kv_heads_pair[1]).to("cuda") |
| 59 | + |
| 60 | + # Quantize the model |
| 61 | + dummy_input = torch.randint(0, 256, (1, 16), device="cuda") |
| 62 | + mtq.quantize(model, quant_config, lambda m: m(dummy_input)) |
| 63 | + |
| 64 | + # Run forward pass before fusion |
| 65 | + model.eval() |
| 66 | + with torch.no_grad(): |
| 67 | + output_before_fuse = model(dummy_input) |
| 68 | + |
| 69 | + traget_module_name_list = [ |
| 70 | + "model.layers.0.self_attn.o_proj", |
| 71 | + "model.layers.0.mlp.down_proj", |
| 72 | + "model.layers.1.self_attn.o_proj", |
| 73 | + "model.layers.1.mlp.down_proj", |
| 74 | + ] |
| 75 | + |
| 76 | + # Apply fusion |
| 77 | + pattern_fuse_prequant(model) |
| 78 | + |
| 79 | + # Check if pre_quant_scale and fused_with_prequant flag are removed correctly |
| 80 | + for target_module_name in traget_module_name_list: |
| 81 | + target_module = model.get_submodule(target_module_name) |
| 82 | + |
| 83 | + # Verify pre_quant_scale was removed |
| 84 | + assert not hasattr(target_module.input_quantizer, "_pre_quant_scale"), ( |
| 85 | + f"{target_module_name}: pre_quant_scale should be removed after fusion" |
| 86 | + ) |
| 87 | + |
| 88 | + # Verify fused_with_prequant flag was set |
| 89 | + assert ( |
| 90 | + hasattr(target_module, "fused_with_prequant") and target_module.fused_with_prequant |
| 91 | + ), f"{target_module_name}: fused_with_prequant flag should be set" |
| 92 | + |
| 93 | + # Verify output is close to the original output |
| 94 | + with torch.no_grad(): |
| 95 | + output_after_fuse = model(dummy_input) |
| 96 | + # There will be some small difference due to quantization errors after pre_quant_scale fusion to the weights |
| 97 | + assert torch.allclose( |
| 98 | + output_before_fuse.logits, output_after_fuse.logits, rtol=1e-1, atol=5e-1 |
| 99 | + ), "Output should be the same before and after fusion" |
0 commit comments