-
Notifications
You must be signed in to change notification settings - Fork 2.3k
Closed
Description
Description
Previously, I remember I can use --exportLayerInfo to dump the comprehensive layerwise info of the engine, including the precision of the layer, and the IO tensor datatype and layouts.
However, for the trtexec from the most recent releases, it seems that these useful information is gone. If this behavior is intended, how do I save the detailed layerwise info, including sparsity, using trtexec?
Environment
NGC Docker container nvcr.io/nvidia/tensorrt:24.06-py3.
Steps To Reproduce
$ docker run -it --rm --gpus all -v $(pwd):/mnt nvcr.io/nvidia/tensorrt:24.06-py3
$ cd /mnt
$ wget https://github.com/onnx/models/raw/main/validated/vision/classification/resnet/model/resnet18-v1-7.onnx
$ trtexec --onnx=resnet18-v1-7.onnx --fp16 --int8 --saveEngine=resnet18-v1-7.engine --exportProfile=resnet18-v1-7.txt --exportLayerInfo=resnet18-v1-7.json
$ cat resnet18-v1-7.json
{"Layers": ["Reformatting CopyNode for Input Tensor 0 to resnetv15_conv0_fwd + resnetv15_batchnorm0_fwd + resnetv15_relu0_fwd + resnetv15_pool0_fwd"
,"resnetv15_conv0_fwd + resnetv15_batchnorm0_fwd + resnetv15_relu0_fwd + resnetv15_pool0_fwd"
,"resnetv15_stage1_conv0_fwd + resnetv15_stage1_batchnorm0_fwd + resnetv15_stage1_relu0_fwd"
,"resnetv15_stage1_conv1_fwd + resnetv15_stage1_batchnorm1_fwd + resnetv15_stage1__plus0 + resnetv15_stage1_activation0"
,"resnetv15_stage1_conv2_fwd + resnetv15_stage1_batchnorm2_fwd + resnetv15_stage1_relu1_fwd"
,"resnetv15_stage1_conv3_fwd + resnetv15_stage1_batchnorm3_fwd + resnetv15_stage1__plus1 + resnetv15_stage1_activation1"
,"resnetv15_stage2_conv0_fwd + resnetv15_stage2_batchnorm0_fwd + resnetv15_stage2_relu0_fwd"
,"resnetv15_stage2_conv1_fwd + resnetv15_stage2_batchnorm1_fwd"
,"resnetv15_stage2_conv2_fwd + resnetv15_stage2_batchnorm2_fwd + resnetv15_stage2__plus0 + resnetv15_stage2_activation0"
,"resnetv15_stage2_conv3_fwd + resnetv15_stage2_batchnorm3_fwd + resnetv15_stage2_relu1_fwd"
,"resnetv15_stage2_conv4_fwd + resnetv15_stage2_batchnorm4_fwd + resnetv15_stage2__plus1 + resnetv15_stage2_activation1"
,"resnetv15_stage3_conv0_fwd + resnetv15_stage3_batchnorm0_fwd + resnetv15_stage3_relu0_fwd"
,"resnetv15_stage3_conv1_fwd + resnetv15_stage3_batchnorm1_fwd"
,"resnetv15_stage3_conv2_fwd + resnetv15_stage3_batchnorm2_fwd + resnetv15_stage3__plus0 + resnetv15_stage3_activation0"
,"resnetv15_stage3_conv3_fwd + resnetv15_stage3_batchnorm3_fwd + resnetv15_stage3_relu1_fwd"
,"resnetv15_stage3_conv4_fwd + resnetv15_stage3_batchnorm4_fwd + resnetv15_stage3__plus1 + resnetv15_stage3_activation1"
,"resnetv15_stage4_conv0_fwd + resnetv15_stage4_batchnorm0_fwd + resnetv15_stage4_relu0_fwd"
,"resnetv15_stage4_conv1_fwd + resnetv15_stage4_batchnorm1_fwd"
,"resnetv15_stage4_conv2_fwd + resnetv15_stage4_batchnorm2_fwd + resnetv15_stage4__plus0 + resnetv15_stage4_activation0"
,"resnetv15_stage4_conv3_fwd + resnetv15_stage4_batchnorm3_fwd + resnetv15_stage4_relu1_fwd"
,"resnetv15_stage4_conv4_fwd + resnetv15_stage4_batchnorm4_fwd + resnetv15_stage4__plus1 + resnetv15_stage4_activation1"
,"resnetv15_pool1_fwd"
,"Reformatting CopyNode for Input Tensor 0 to resnetv15_dense0_fwd + (Unnamed Layer* 78) [ElementWise]"
,"resnetv15_dense0_fwd + (Unnamed Layer* 78) [ElementWise]"
,"reshape_after_resnetv15_dense0_fwd"
],
"Bindings": ["data"
,"resnetv15_dense0_fwd"
]}Metadata
Metadata
Assignees
Labels
No labels