-
Notifications
You must be signed in to change notification settings - Fork 2.3k
Description
Description
For the following valid onnx model,

TensorRT fails to infer the shape of the output. The shape of the final_output is:
(1, 0, 32, 7)However, when I execute this model using onnxruntime, the shape of the final_output is:
(1, 1, 32, 7)This issue further leads an error to gpu memory allocation.
device_mem = cuda.mem_alloc(host_mem.nbytes)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
pycuda._driver.LogicError: cuMemAlloc failed: invalid argumentEnvironment
TensorRT Version: 10.11.0.33
NVIDIA GPU: GeForce RTX 3080
NVIDIA Driver Version: 535.183.01
CUDA Version: 12.2
CUDNN Version: none
Operating System: ubuntu 20.04
Python Version (if applicable): 3.12.9
Tensorflow Version (if applicable): none
PyTorch Version (if applicable): none
Baremetal or Container (if so, version): none
Steps To Reproduce
This bug can be reproduced by the following code with the model in the attachment. As shown in the code, the model can be executed by onnxruntime.
from typing import Dict, List, Literal, Optional
import sys
import os
import numpy as np
import onnx
import onnxruntime
from onnx import ModelProto, TensorProto, helper, mapping
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import argparse
import pickle
def test():
onnx_model = onnx.load("1111.onnx")
with open("inputs.pkl", "rb") as fp:
inputs = pickle.load(fp)
try:
ort_session = onnxruntime.InferenceSession(
onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]
)
ort_output = ort_session.run([], inputs)
except Exception as e:
print(e)
print("This model cannot be executed by onnxruntime!")
sys.exit(1)
print("ONNXRuntime:\n", ort_output[0].shape)
#--------------------------------------------------------
trt_logger = trt.Logger(trt.Logger.WARNING)
trt.init_libnvinfer_plugins(trt_logger, '')
builder = trt.Builder(trt_logger)
network = builder.create_network(flags=1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
parser = trt.OnnxParser(network, trt_logger)
with open("1111.onnx", 'rb') as model_file:
if not parser.parse(model_file.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
sys.exit(1)
config = builder.create_builder_config()
serialized_engine = builder.build_serialized_network(network, config)
if serialized_engine == None:
sys.exit(1)
with open("engine.trt", "wb") as f:
f.write(serialized_engine)
with open("engine.trt", "rb") as f, trt.Runtime(trt_logger) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
#------------------------------------------------------------
for binding in engine:
print(binding, engine.get_tensor_shape(binding))
if __name__ == "__main__":
test()Commands or scripts:
Have you tried the latest release?: yes
Can this model run on other frameworks? For example run ONNX model with ONNXRuntime (polygraphy run <model.onnx> --onnxrt): the mode can be executed by onnxruntime.