-
Notifications
You must be signed in to change notification settings - Fork 2.3k
Closed
Labels
Module:AccuracyOutput mismatch between TensorRT and other frameworksOutput mismatch between TensorRT and other frameworksModule:ONNXIssues relating to ONNX usage and importIssues relating to ONNX usage and importModule:PolygraphyIssues with PolygraphyIssues with Polygraphy
Description
Hi team, I did the outputs comparison over my onnx and engine via polygraphy, here is the result I got,
[I] Comparing Output: 'image_embed' (dtype=float32, shape=(1, 256, 64, 64)) with 'image_embed' (dtype=float32, shape=(1, 256, 64, 64))
[I] Tolerance: [abs=1e-05, rel=1e-05] | Checking elemwise error
[I] trt-runner-N0-07/02/25-14:51:06: image_embed | Stats: mean=0.017427, std-dev=0.41016, var=0.16823, median=0.018033, min=-2.275 at (0, 175, 31, 46), max=2.2183 at (0, 78, 59, 0), avg-magnitude=0.31484, p90=0.51308, p95=0.65992, p99=1.0627
[I] ---- Histogram ----
Bin Range | Num Elems | Visualization
(-2.27 , -1.83 ) | 1036 |
(-1.83 , -1.38 ) | 2521 |
(-1.38 , -0.927 ) | 10504 |
(-0.927 , -0.478 ) | 90076 | ########
(-0.478 , -0.0283) | 368189 | ##################################
(-0.0283, 0.421 ) | 421553 | ########################################
(0.421 , 0.87 ) | 135590 | ############
(0.87 , 1.32 ) | 14542 | #
(1.32 , 1.77 ) | 4208 |
(1.77 , 2.22 ) | 357 |
[I] onnxrt-runner-N0-07/02/25-14:51:06: image_embed | Stats: mean=0.017427, std-dev=0.41016, var=0.16823, median=0.018033, min=-2.275 at (0, 175, 31, 46), max=2.2183 at (0, 78, 59, 0), avg-magnitude=0.31484, p90=0.51308, p95=0.65992, p99=1.0627
[I] ---- Histogram ----
Bin Range | Num Elems | Visualization
(-2.27 , -1.83 ) | 1036 |
(-1.83 , -1.38 ) | 2521 |
(-1.38 , -0.927 ) | 10504 |
(-0.927 , -0.478 ) | 90077 | ########
(-0.478 , -0.0283) | 368189 | ##################################
(-0.0283, 0.421 ) | 421552 | ########################################
(0.421 , 0.87 ) | 135590 | ############
(0.87 , 1.32 ) | 14542 | #
(1.32 , 1.77 ) | 4208 |
(1.77 , 2.22 ) | 357 |
[I] Error Metrics: image_embed
[I] Minimum Required Tolerance: elemwise error | [abs=4.4644e-05] OR [rel=0.82618] (requirements may be lower if both abs/rel tolerances are set)
[I] Absolute Difference | Stats: mean=1.1709e-06, std-dev=1.1147e-06, var=1.2425e-12, median=8.9407e-07, min=0 at (0, 0, 0, 0), max=4.4644e-05 at (0, 204, 38, 61), avg-magnitude=1.1709e-06, p90=2.481e-06, p95=3.1292e-06, p99=4.8578e-06
[I] ---- Histogram ----
Bin Range | Num Elems | Visualization
(0 , 4.46e-06) | 1033928 | ########################################
(4.46e-06, 8.93e-06) | 13333 |
(8.93e-06, 1.34e-05) | 868 |
(1.34e-05, 1.79e-05) | 260 |
(1.79e-05, 2.23e-05) | 126 |
(2.23e-05, 2.68e-05) | 38 |
(2.68e-05, 3.13e-05) | 17 |
(3.13e-05, 3.57e-05) | 5 |
(3.57e-05, 4.02e-05) | 0 |
(4.02e-05, 4.46e-05) | 1 |
[I] Relative Difference | Stats: mean=3.0263e-05, std-dev=0.0014917, var=2.2251e-06, median=3.5821e-06, min=0 at (0, 0, 0, 0), max=0.82618 at (0, 42, 8, 21), avg-magnitude=3.0263e-05, p90=2.3614e-05, p95=4.7767e-05, p99=0.00023932
[I] ---- Histogram ----
Bin Range | Num Elems | Visualization
(0 , 0.0826) | 1048549 | ########################################
(0.0826, 0.165 ) | 15 |
(0.165 , 0.248 ) | 5 |
(0.248 , 0.33 ) | 2 |
(0.33 , 0.413 ) | 1 |
(0.413 , 0.496 ) | 3 |
(0.496 , 0.578 ) | 0 |
(0.578 , 0.661 ) | 0 |
(0.661 , 0.744 ) | 0 |
(0.744 , 0.826 ) | 1 |
[E] FAILED | Output: 'image_embed' | Difference exceeds tolerance (rel=1e-05, abs=1e-05)
[E] FAILED | Mismatched outputs: ['image_embed']
[E] Accuracy Summary | trt-runner-N0-07/02/25-14:51:06 vs. onnxrt-runner-N0-07/02/25-14:51:06 | Passed: 0/1 iterations | Pass Rate: 0.0%
I know there would be a difference between the outputs of the engine and other frameworks, but to what extent we think the difference is acceptable, and the built engine is correctly converted from the onnx model.
Any insight would be appreciated. Thanks in advance
Metadata
Metadata
Assignees
Labels
Module:AccuracyOutput mismatch between TensorRT and other frameworksOutput mismatch between TensorRT and other frameworksModule:ONNXIssues relating to ONNX usage and importIssues relating to ONNX usage and importModule:PolygraphyIssues with PolygraphyIssues with Polygraphy