@@ -95,11 +95,11 @@ when constructing a cell type for use in the :class:`Population` constructor
9595(see above) and in the :meth:`Population.set` method, parameter values can be
9696any of the following:
9797
98- * a single number - sets the same value for all cells in the :class:`Population`;
99- * a :class:`RandomDistribution` object - for each cell, sets a different
98+ * a single number - sets the same value for all cells in the :class:`Population`;
99+ * a :class:`RandomDistribution` object - for each cell, sets a different
100100 random value drawn from the distribution;
101- * a list or 1D NumPy array of the same size as the :class:`Population`;
102- * a function that takes a single integer argument; this function will be
101+ * a list or 1D NumPy array of the same size as the :class:`Population`;
102+ * a function that takes a single integer argument; this function will be
103103 called with the index of every cell in the :class:`Population` to return
104104 the parameter value for that cell.
105105
@@ -197,11 +197,11 @@ package, which provides a common Python object model for neurophysiology data
197197
198198Using Neo provides several advantages:
199199
200- * data objects contain essential metadata, such as units, sampling interval, etc.;
201- * data can be saved to any of the file formats supported by Neo, including HDF5 and Matlab files;
202- * it is easier to handle data when running multiple simulations with the same network (calling :meth:`reset` between each one);
203- * it is possible to save multiple signals to a single file;
204- * better interoperability with other Python packages using Neo (for data analysis, etc.).
200+ * data objects contain essential metadata, such as units, sampling interval, etc.;
201+ * data can be saved to any of the file formats supported by Neo, including HDF5 and Matlab files;
202+ * it is easier to handle data when running multiple simulations with the same network (calling :meth:`reset` between each one);
203+ * it is possible to save multiple signals to a single file;
204+ * better interoperability with other Python packages using Neo (for data analysis, etc.).
205205
206206Note that Neo is based on NumPy, and most Neo data objects sub-class the NumPy
207207:class:`ndarray` class, so much of your data handling code should work exactly
@@ -230,7 +230,7 @@ arguments to a :class:`SynapseType` sub-class such as :class:`StaticSynapse` or
230230:class:`TsodyksMarkramSynapse`. For example, instead of::
231231
232232 prj = Projection(p1, p2, AllToAllConnector(weights=0.05, delays=0.5)) # PyNN 0.7
233-
233+
234234you should now write::
235235
236236 prj = Projection(p1, p2, AllToAllConnector(), StaticSynapse(weight=0.05, delay=0.5)) # PyNN 0.8
@@ -268,13 +268,13 @@ Specifying heterogeneous synapse parameters
268268As for neuron parameters, synapse parameter values can now be any of the
269269following:
270270
271- * a single number - sets the same value for all connections in the :class:`Projection`;
272- * a :class:`RandomDistribution` object - for each connection, sets a different
271+ * a single number - sets the same value for all connections in the :class:`Projection`;
272+ * a :class:`RandomDistribution` object - for each connection, sets a different
273273 random value drawn from the distribution;
274- * a list or 1D NumPy array of the same size as the :class:`Projection`
274+ * a list or 1D NumPy array of the same size as the :class:`Projection`
275275 (although this is not very useful for random networks, whose size may not
276276 be known in advance);
277- * a function that takes a single float argument; this function will be
277+ * a function that takes a single float argument; this function will be
278278 called with the *distance* between the pre- and post-synaptic cell to return
279279 the parameter value for that cell.
280280
@@ -305,10 +305,10 @@ as follows::
305305
306306 prj.printWeights('exc_weights.txt', format='array') # PyNN 0.7
307307 prj.save('weight', 'exc_weights.txt', format='array') # PyNN 0.8
308-
308+
309309 prj.saveConnections('exc_conn.txt') # PyNN 0.7
310310 prj.save('all', 'exc_conn.txt', format='list') # PyNN 0.8
311-
311+
312312Also note that all three new methods can operate on several parameters at a time::
313313
314314 weights, delays = prj.getWeights('array'), prj.getDelays('array') # PyNN 0.7
0 commit comments