Skip to content

Commit 755d37c

Browse files
committed
Reduce list indents to give better results with the new Sphinx theme
1 parent bf479e9 commit 755d37c

File tree

12 files changed

+131
-131
lines changed

12 files changed

+131
-131
lines changed

doc/connections.txt

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -349,10 +349,10 @@ User-defined connection algorithms
349349
If you wish to use a specific connection/wiring algorithm not covered by the
350350
PyNN built-in ones, the options include:
351351

352-
* constructing a list or array of connections and using the
352+
* constructing a list or array of connections and using the
353353
:class:`FromListConnector` or :class:`ArrayConnector` class;
354-
* using the Connection Set Algebra and the :class:`CSAConnector` class;
355-
* writing your own :class:`Connector` class - see the
354+
* using the Connection Set Algebra and the :class:`CSAConnector` class;
355+
* writing your own :class:`Connector` class - see the
356356
:doc:`developers_guide` for guidance on this.
357357

358358

@@ -362,25 +362,25 @@ Projections
362362
A :class:`Projection` is a container for a set of connections between two
363363
populations of neurons, where by population we mean one of:
364364

365-
* a :class:`Population` object - a group of neurons all of the same type;
366-
* a :class:`PopulationView` object - part of a :class:`Population`;
367-
* a :class:`Assembly` - a heterogeneous group of neurons, which may be of different types.
365+
* a :class:`Population` object - a group of neurons all of the same type;
366+
* a :class:`PopulationView` object - part of a :class:`Population`;
367+
* a :class:`Assembly` - a heterogeneous group of neurons, which may be of different types.
368368

369369
Creating a :class:`Projection` in PyNN also creates the connections at the
370370
level of the simulator. To create a :class:`Projection` we must specify:
371371

372-
* the pre-synaptic population;
373-
* the post-synaptic population;
374-
* a connection/wiring method;
375-
* a synapse type
372+
* the pre-synaptic population;
373+
* the post-synaptic population;
374+
* a connection/wiring method;
375+
* a synapse type
376376

377377
Optionally, we can also specify:
378378

379-
* the name of the post-synaptic mechanism (e.g. ‘excitatory’, ‘NMDA’)
379+
* the name of the post-synaptic mechanism (e.g. ‘excitatory’, ‘NMDA’)
380380
(if not specified, PyNN picks a default depending on the weight
381381
parameter of the synapse type);
382-
* a label (autogenerated if not specified);
383-
* a :class:`Space` object, which determines how distances should be
382+
* a label (autogenerated if not specified);
383+
* a :class:`Space` object, which determines how distances should be
384384
calculated for distance-dependent wiring schemes or parameter values.
385385

386386
Here is a minimal example:
@@ -536,13 +536,13 @@ attributes after creation, using the :meth:`set` method.
536536
:meth:`set` accepts any number of keyword arguments, where the key is the
537537
attribute name, and the value is either:
538538

539-
* a numeric value (all connections will be set to the same value);
540-
* a :class:`~pyNN.random.RandomDistribution` object (each connection will be
539+
* a numeric value (all connections will be set to the same value);
540+
* a :class:`~pyNN.random.RandomDistribution` object (each connection will be
541541
set to a different value, drawn from the distribution);
542-
* a list or NumPy array of the same length as the number of connections in
542+
* a list or NumPy array of the same length as the number of connections in
543543
the :class:`Projection`;
544-
* a generator;
545-
* a string expressing a function of the distance between pre- and post-synaptic
544+
* a generator;
545+
* a string expressing a function of the distance between pre- and post-synaptic
546546
neurons.
547547

548548
.. todo:: clarify whether this is the number of *local* connections or the total

doc/developers/contributing.txt

Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -19,13 +19,13 @@ Requirements
1919
In addition to the requirements listed in :doc:`../installation`, you will need to
2020
install:
2121

22-
* pytest_
23-
* coverage_
22+
* pytest_
23+
* coverage_
2424

2525
to run tests, and:
2626

27-
* Sphinx_
28-
* matplotlib
27+
* Sphinx_
28+
* matplotlib
2929

3030
to build the documentation.
3131

@@ -54,8 +54,8 @@ and then you can pull in any upstream changes::
5454

5555
To get PyNN onto your :envvar:`PYTHONPATH` there are many options, such as:
5656

57-
* pip editable mode (`pip install -e /path/to/PyNN`)
58-
* creating a symbolic link named :file:`pyNN` from somewhere that is already
57+
* pip editable mode (`pip install -e /path/to/PyNN`)
58+
* creating a symbolic link named :file:`pyNN` from somewhere that is already
5959
on your :envvar:`PYTHONPATH`, such as the :file:`site-packages` directory,
6060
to the :file:`pyNN_dev/pyNN` directory.
6161

@@ -169,20 +169,20 @@ in becoming release manager for PyNN, please contact us via the `mailing list`_.
169169
When you think a release is ready, run through the following checklist one
170170
last time:
171171

172-
* do all the tests pass? This means running :command:`pytest` in
172+
* do all the tests pass? This means running :command:`pytest` in
173173
:file:`test/unittests` and :file:`test/system` and running :command:`make doctest` in
174174
:file:`doc`. You should do this on at least two Linux systems -- one a very
175175
recent version and one at least a year old, and on at least one version of
176176
Mac OS X. You should also do this with multiple Python versions (3.7+).
177-
* do all the example scripts generate the correct output? Run the
177+
* do all the example scripts generate the correct output? Run the
178178
:file:`run_all_examples.py` script in :file:`examples/tools` and then visually
179179
check the :file:`.png` files generated in :file:`examples/tools/Results`. Again,
180180
you should do this on at least two Linux systems and one Mac OS X system.
181-
* does the documentation build without errors? You should then at least skim
181+
* does the documentation build without errors? You should then at least skim
182182
the generated HTML pages to check for obvious problems.
183-
* have you updated the version numbers in :file:`pyproject.toml`, :file:`pyNN/__init__.py`,
183+
* have you updated the version numbers in :file:`pyproject.toml`, :file:`pyNN/__init__.py`,
184184
:file:`doc/conf.py` and :file:`doc/installation.txt`?
185-
* have you updated the changelog?
185+
* have you updated the changelog?
186186

187187
Once you've confirmed all the above, create source and wheel packages using::
188188

@@ -201,23 +201,23 @@ repository (in the :file:`docs/PyNN` directory).
201201

202202
If this is a final release, there are a few more steps:
203203

204-
* if it is a major release (i.e. an ``x.y.0`` release), create a new bug-fix
204+
* if it is a major release (i.e. an ``x.y.0`` release), create a new bug-fix
205205
branch::
206206

207207
$ git branch x.y
208208

209-
* upload the packages to PyPI (Do **not** upload development releases to PyPI)::
209+
* upload the packages to PyPI (Do **not** upload development releases to PyPI)::
210210

211211
$ twine upload dist/PyNN-x.y.z*
212212

213-
* update the :file:`codemeta.json` file
213+
* update the :file:`codemeta.json` file
214214

215-
* make an announcement on the `mailing list`_
215+
* make an announcement on the `mailing list`_
216216

217-
* if it is a major release, write a blog post about it with a focus on the
217+
* if it is a major release, write a blog post about it with a focus on the
218218
new features and major changes
219219

220-
* go home, take a headache pill and lie down for a while in a darkened room (-;
220+
* go home, take a headache pill and lie down for a while in a darkened room (-;
221221

222222

223223

doc/download.txt

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -14,12 +14,12 @@ the links below.
1414

1515
Older versions:
1616

17-
* `0.10.1 <https://pypi.python.org/pypi/PyNN/0.10.1>`_
18-
* `0.9.6 <https://pypi.python.org/pypi/PyNN/0.9.6>`_
19-
* `0.8.0 <https://pypi.python.org/pypi/PyNN/0.8.0>`_
20-
* `0.7.5 <https://pypi.python.org/pypi/PyNN/0.7.5>`_
21-
* `0.6.0 <https://pypi.python.org/pypi/PyNN/0.6.0>`_
22-
* `0.5.0 <https://pypi.python.org/pypi/PyNN/0.5.0>`_
17+
* `0.10.1 <https://pypi.python.org/pypi/PyNN/0.10.1>`_
18+
* `0.9.6 <https://pypi.python.org/pypi/PyNN/0.9.6>`_
19+
* `0.8.0 <https://pypi.python.org/pypi/PyNN/0.8.0>`_
20+
* `0.7.5 <https://pypi.python.org/pypi/PyNN/0.7.5>`_
21+
* `0.6.0 <https://pypi.python.org/pypi/PyNN/0.6.0>`_
22+
* `0.5.0 <https://pypi.python.org/pypi/PyNN/0.5.0>`_
2323

2424

2525
Latest source code from GitHub

doc/installation.txt

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -7,18 +7,18 @@ install and run PyNN on Windows, but this has not been tested.
77

88
Installing PyNN requires:
99

10-
* Python (version 3.8+)
11-
* a recent version of the NumPy_ package
12-
* the lazyarray_ package
13-
* the Neo_ package (>= 0.11.0)
14-
* at least one of the supported simulators: e.g. NEURON, NEST, Brian 2 or Arbor.
10+
* Python (version 3.8+)
11+
* a recent version of the NumPy_ package
12+
* the lazyarray_ package
13+
* the Neo_ package (>= 0.11.0)
14+
* at least one of the supported simulators: e.g. NEURON, NEST, Brian 2 or Arbor.
1515

1616
Optional dependencies are:
1717

18-
* mpi4py_ (if you wish to run distributed simulations using MPI)
19-
* either Jinja2_ or Cheetah_ (templating engines)
20-
* the CSA_ library
21-
* h5py (to use the SONATA format)
18+
* mpi4py_ (if you wish to run distributed simulations using MPI)
19+
* either Jinja2_ or Cheetah_ (templating engines)
20+
* the CSA_ library
21+
* h5py (to use the SONATA format)
2222

2323
Installing PyNN
2424
===============

doc/mc_installation.txt

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -7,17 +7,17 @@ install and run PyNN on Windows, but this has not been tested.
77

88
Installing PyNN requires:
99

10-
* Python (version 2.7, 3.4-3.6)
11-
* a recent version of the NumPy_ package
12-
* the lazyarray_ package
13-
* the Neo_ package (>= 0.5.0)
14-
* the NEURON simulator
10+
* Python (version 2.7, 3.4-3.6)
11+
* a recent version of the NumPy_ package
12+
* the lazyarray_ package
13+
* the Neo_ package (>= 0.5.0)
14+
* the NEURON simulator
1515

1616
Optional dependencies are:
1717

18-
* mpi4py_ (if you wish to run distributed simulations using MPI)
19-
* either Jinja2_ or Cheetah_ (templating engines)
20-
* the CSA_ library
18+
* mpi4py_ (if you wish to run distributed simulations using MPI)
19+
* either Jinja2_ or Cheetah_ (templating engines)
20+
* the CSA_ library
2121

2222
Installing PyNN
2323
===============

doc/neurons.txt

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -125,9 +125,9 @@ To create a :class:`Population`, we need to specify at minimum the number of
125125
neurons and the cell type. Three additional arguments may optionally be
126126
specified:
127127

128-
* the spatial structure of the population;
129-
* initial values for the neuron state variables;
130-
* a label.
128+
* the spatial structure of the population;
129+
* initial values for the neuron state variables;
130+
* a label.
131131

132132
.. testcode::
133133
:hide:

doc/random_numbers.txt

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -5,20 +5,20 @@ Random numbers
55
There are four considerations for random number generation and consumption in
66
PyNN:
77

8-
**Reproducibility**:
8+
**Reproducibility**:
99
When comparing simulations with different backends, we may wish to
1010
ensure that all backends use the same sequence of random numbers so that
1111
the only differences between simulations arise from the numerics of the
1212
simulators.
13-
**Performance**:
13+
**Performance**:
1414
All simulators have their own built-in facilities for random number
1515
generation, and it may be faster to use these than to use random numbers
1616
generated by PyNN.
17-
**Distributed simulations**:
17+
**Distributed simulations**:
1818
When distributing simulations across multiple processors using MPI, we
1919
may wish to ensure that the sequence of random numbers is independent of
2020
the number of computation nodes.
21-
**Quality**:
21+
**Quality**:
2222
Different models have different requirements for the quality of the
2323
(pseudo-)random number generator used. For models that are not strongly
2424
dependent on this, we may wish to use a generator that is faster but has
@@ -37,11 +37,11 @@ have an optional *rng* argument, which should be an instance of a subclass of
3737
:class:`pyNN.random.AbstractRNG`.
3838
PyNN provides three such sub-classes:
3939

40-
:class:`~pyNN.random.NumpyRNG`:
40+
:class:`~pyNN.random.NumpyRNG`:
4141
Uses the :class:`numpy.random.RandomState` class (Mersenne Twister).
42-
:class:`~pyNN.random.GSLRNG`:
42+
:class:`~pyNN.random.GSLRNG`:
4343
Uses the `GNU Scientific Library random number generators`_.
44-
:class:`~pyNN.random.NativeRNG`:
44+
:class:`~pyNN.random.NativeRNG`:
4545
Signals that the simulator's own built-in RNG should be used.
4646

4747
If you wish to use your own random number generator, it is reasonably

doc/reference/neuronmodels.txt

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -45,12 +45,12 @@ Standard cell types
4545

4646
* Composed models:
4747

48-
* :class:`AdExp`
49-
* :class:`LIF`
50-
* :class:`~pyNN.standardmodels.receptors.CurrExpPostSynapticResponse`
51-
* :class:`~pyNN.standardmodels.receptors.CondExpPostSynapticResponse`
52-
* :class:`~pyNN.standardmodels.receptors.CondAlphaPostSynapticResponse`
53-
* :class:`~pyNN.standardmodels.receptors.CondBetaPostSynapticResponse`
48+
* :class:`AdExp`
49+
* :class:`LIF`
50+
* :class:`~pyNN.standardmodels.receptors.CurrExpPostSynapticResponse`
51+
* :class:`~pyNN.standardmodels.receptors.CondExpPostSynapticResponse`
52+
* :class:`~pyNN.standardmodels.receptors.CondAlphaPostSynapticResponse`
53+
* :class:`~pyNN.standardmodels.receptors.CondBetaPostSynapticResponse`
5454

5555

5656
Base class

doc/releases/0.8-alpha-1.txt

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -95,11 +95,11 @@ when constructing a cell type for use in the :class:`Population` constructor
9595
(see above) and in the :meth:`Population.set` method, parameter values can be
9696
any of the following:
9797

98-
* a single number - sets the same value for all cells in the :class:`Population`;
99-
* a :class:`RandomDistribution` object - for each cell, sets a different
98+
* a single number - sets the same value for all cells in the :class:`Population`;
99+
* a :class:`RandomDistribution` object - for each cell, sets a different
100100
random value drawn from the distribution;
101-
* a list or 1D NumPy array of the same size as the :class:`Population`;
102-
* a function that takes a single integer argument; this function will be
101+
* a list or 1D NumPy array of the same size as the :class:`Population`;
102+
* a function that takes a single integer argument; this function will be
103103
called with the index of every cell in the :class:`Population` to return
104104
the parameter value for that cell.
105105

@@ -197,11 +197,11 @@ package, which provides a common Python object model for neurophysiology data
197197

198198
Using Neo provides several advantages:
199199

200-
* data objects contain essential metadata, such as units, sampling interval, etc.;
201-
* data can be saved to any of the file formats supported by Neo, including HDF5 and Matlab files;
202-
* it is easier to handle data when running multiple simulations with the same network (calling :meth:`reset` between each one);
203-
* it is possible to save multiple signals to a single file;
204-
* better interoperability with other Python packages using Neo (for data analysis, etc.).
200+
* data objects contain essential metadata, such as units, sampling interval, etc.;
201+
* data can be saved to any of the file formats supported by Neo, including HDF5 and Matlab files;
202+
* it is easier to handle data when running multiple simulations with the same network (calling :meth:`reset` between each one);
203+
* it is possible to save multiple signals to a single file;
204+
* better interoperability with other Python packages using Neo (for data analysis, etc.).
205205

206206
Note that Neo is based on NumPy, and most Neo data objects sub-class the NumPy
207207
:class:`ndarray` class, so much of your data handling code should work exactly
@@ -230,7 +230,7 @@ arguments to a :class:`SynapseType` sub-class such as :class:`StaticSynapse` or
230230
:class:`TsodyksMarkramSynapse`. For example, instead of::
231231

232232
prj = Projection(p1, p2, AllToAllConnector(weights=0.05, delays=0.5)) # PyNN 0.7
233-
233+
234234
you should now write::
235235

236236
prj = Projection(p1, p2, AllToAllConnector(), StaticSynapse(weight=0.05, delay=0.5)) # PyNN 0.8
@@ -268,13 +268,13 @@ Specifying heterogeneous synapse parameters
268268
As for neuron parameters, synapse parameter values can now be any of the
269269
following:
270270

271-
* a single number - sets the same value for all connections in the :class:`Projection`;
272-
* a :class:`RandomDistribution` object - for each connection, sets a different
271+
* a single number - sets the same value for all connections in the :class:`Projection`;
272+
* a :class:`RandomDistribution` object - for each connection, sets a different
273273
random value drawn from the distribution;
274-
* a list or 1D NumPy array of the same size as the :class:`Projection`
274+
* a list or 1D NumPy array of the same size as the :class:`Projection`
275275
(although this is not very useful for random networks, whose size may not
276276
be known in advance);
277-
* a function that takes a single float argument; this function will be
277+
* a function that takes a single float argument; this function will be
278278
called with the *distance* between the pre- and post-synaptic cell to return
279279
the parameter value for that cell.
280280

@@ -305,10 +305,10 @@ as follows::
305305

306306
prj.printWeights('exc_weights.txt', format='array') # PyNN 0.7
307307
prj.save('weight', 'exc_weights.txt', format='array') # PyNN 0.8
308-
308+
309309
prj.saveConnections('exc_conn.txt') # PyNN 0.7
310310
prj.save('all', 'exc_conn.txt', format='list') # PyNN 0.8
311-
311+
312312
Also note that all three new methods can operate on several parameters at a time::
313313

314314
weights, delays = prj.getWeights('array'), prj.getDelays('array') # PyNN 0.7

0 commit comments

Comments
 (0)