@@ -1853,9 +1853,6 @@ static void ggml_cuda_mul_mat_batched_cublas_impl(ggml_backend_cuda_context & ct
18531853 ggml_cuda_pool_alloc<cuda_t > src0_alloc (ctx.pool ());
18541854 ggml_cuda_pool_alloc<cuda_t > src1_alloc (ctx.pool ());
18551855
1856- bool is_src0_cont_2 = ggml_is_contiguous_2 (src0);
1857- bool is_src1_cont_2 = ggml_is_contiguous_2 (src1);
1858-
18591856 // Handle src0
18601857 src0_ptr = (const cuda_t *) src0->data ;
18611858
@@ -1874,8 +1871,6 @@ static void ggml_cuda_mul_mat_batched_cublas_impl(ggml_backend_cuda_context & ct
18741871 s11 = ne10;
18751872 s12 = ne11*s11;
18761873 s13 = ne12*s12;
1877-
1878- is_src1_cont_2 = true ;
18791874 }
18801875
18811876 // Setup destination buffer
@@ -1924,19 +1919,15 @@ static void ggml_cuda_mul_mat_batched_cublas_impl(ggml_backend_cuda_context & ct
19241919 const int64_t r2 = ne12/ne02;
19251920 const int64_t r3 = ne13/ne03;
19261921
1927- if (r2 == 1 && r3 == 1 && is_src0_cont_2 && is_src1_cont_2) {
1928- // with a [0, 2, 1, 3] perm. and ne02==1 the matrix strides need to be determined from dim 3:
1929- const int64_t sma = ne02 == 1 ? nb03/nb00 : nb02/nb00;
1930- const int64_t smb = ne12 == 1 ? s13 : s12;
1931-
1922+ if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2 (src0) && ggml_is_contiguous_2 (src1)) {
19321923 // there is no broadcast and src0, src1 are contiguous across dims 2, 3
19331924 // use cublasGemmStridedBatchedEx
19341925 CUBLAS_CHECK (
19351926 cublasGemmStridedBatchedEx (ctx.cublas_handle (), CUBLAS_OP_T, CUBLAS_OP_N,
19361927 ne01, ne11, ne10,
1937- alpha, src0_ptr, cu_data_type_a, nb01/nb00, sma, // strideA
1938- src1_ptr, cu_data_type_b, s11, smb, // strideB
1939- beta, dst_t , cu_data_type, ne0, ne1*ne0, // strideC
1928+ alpha, src0_ptr, cu_data_type_a, nb01/nb00, nb02/nb00, // strideA
1929+ src1_ptr, cu_data_type_b, s11, s12, // strideB
1930+ beta, dst_t , cu_data_type, ne0, ne1*ne0, // strideC
19401931 ne12*ne13,
19411932 cu_compute_type,
19421933 CUBLAS_GEMM_DEFAULT_TENSOR_OP));
0 commit comments