@@ -4408,9 +4408,6 @@ def __init__(self, *args, **kwargs):
44084408 ]
44094409
44104410 def set_vocab (self ):
4411- with open (self .dir_model / "chat_template.jinja" ) as f :
4412- # quick hack to make sure chat template is added
4413- self .gguf_writer .add_chat_template (f .read ())
44144411 super ().set_vocab ()
44154412
44164413 def set_gguf_parameters (self ):
@@ -4781,6 +4778,14 @@ def set_gguf_parameters(self):
47814778class MambaModel (TextModel ):
47824779 model_arch = gguf .MODEL_ARCH .MAMBA
47834780
4781+ def __init__ (self , dir_model : Path , * args , ** kwargs ):
4782+ # Avoid using AutoConfig for hparams
4783+ hparams = kwargs .pop ("hparams" , None )
4784+ if hparams is None :
4785+ with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
4786+ hparams = json .load (f )
4787+ super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4788+
47844789 def set_vocab (self ):
47854790 vocab_size = self .hparams ["vocab_size" ]
47864791 # Round vocab size to next multiple of 8
@@ -4855,6 +4860,100 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
48554860 return [(new_name , data_torch )]
48564861
48574862
4863+ @ModelBase .register ("Mamba2ForCausalLM" )
4864+ class Mamba2Model (TextModel ):
4865+ model_arch = gguf .MODEL_ARCH .MAMBA2
4866+
4867+ def __init__ (self , dir_model : Path , * args , ** kwargs ):
4868+ # Avoid using AutoConfig for hparams
4869+ # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
4870+ hparams = kwargs .pop ("hparams" , None )
4871+ if hparams is None :
4872+ with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
4873+ hparams = json .load (f )
4874+ super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4875+
4876+ def set_vocab (self ):
4877+ vocab_size = self .hparams ["vocab_size" ]
4878+ # Round vocab size to next multiple of 16
4879+ pad_vocab = self .hparams .get ("pad_vocab_size_multiple" , 16 )
4880+ # pad using ceiling division
4881+ # ref: https://stackoverflow.com/a/17511341/22827863
4882+ vocab_size = - (vocab_size // - pad_vocab ) * pad_vocab
4883+ self .hparams ["vocab_size" ] = vocab_size
4884+
4885+ if (self .dir_model / "tokenizer.model" ).is_file ():
4886+ self ._set_vocab_sentencepiece ()
4887+ elif (self .dir_model / "tokenizer.model.v3" ).is_file ():
4888+ # mamba-codestral
4889+ raise NotImplementedError (f"Please rename { self .dir_model / 'tokenizer.model.v3' } to { self .dir_model / 'tokenizer.model' } " )
4890+ elif (self .dir_model / "tokenizer.json" ).is_file ():
4891+ self ._set_vocab_gpt2 ()
4892+ else :
4893+ # Use the GPT-NeoX tokenizer when no tokenizer files are present
4894+ self ._set_vocab_builtin ("gpt-neox" , vocab_size )
4895+
4896+ def set_gguf_parameters (self ):
4897+ d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4898+ d_conv = self .find_hparam (["conv_kernel" , "d_conv" ], optional = True ) or 4
4899+ d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4900+ d_state = self .find_hparam (["state_size" , "d_state" ], optional = True ) or 128
4901+ head_dim = self .find_hparam (["head_dim" ], optional = True ) or 64
4902+ n_group = self .find_hparam (["n_groups" ], optional = True ) or 1
4903+
4904+ rms_norm_eps = self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
4905+
4906+ # Fail early for models which don't have a block expansion factor of 2
4907+ # TODO: does this really matter?
4908+ assert d_inner == 2 * d_model
4909+ assert d_inner % head_dim == 0
4910+
4911+ self .gguf_writer .add_context_length (2 ** 20 ) # arbitrary value; for those who use the default
4912+ self .gguf_writer .add_embedding_length (d_model )
4913+ self .gguf_writer .add_feed_forward_length (0 ) # unused, but seemingly required when loading
4914+ self .gguf_writer .add_head_count (0 ) # unused, but seemingly required when loading
4915+ self .gguf_writer .add_block_count (self .block_count )
4916+ self .gguf_writer .add_ssm_conv_kernel (d_conv )
4917+ self .gguf_writer .add_ssm_inner_size (d_inner )
4918+ self .gguf_writer .add_ssm_state_size (d_state )
4919+ self .gguf_writer .add_ssm_time_step_rank (d_inner // head_dim )
4920+ self .gguf_writer .add_ssm_group_count (n_group )
4921+ self .gguf_writer .add_layer_norm_rms_eps (rms_norm_eps )
4922+ self .gguf_writer .add_file_type (self .ftype )
4923+
4924+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
4925+
4926+ if name .startswith ("model.backbone" ) or name .startswith ("model.lm_head" ):
4927+ # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
4928+ name = name .removeprefix ("model." )
4929+
4930+ if name .endswith (".dt_bias" ):
4931+ name = name .rpartition (".dt_bias" )[0 ] + ".dt_proj.bias"
4932+
4933+ new_name = self .map_tensor_name (name )
4934+
4935+ if self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_CONV1D , bid ):
4936+ data_torch = data_torch .squeeze ()
4937+ elif any (self .match_model_tensor_name (new_name , t , bid , suffix = "" ) for t in [
4938+ gguf .MODEL_TENSOR .SSM_A ,
4939+ gguf .MODEL_TENSOR .SSM_D ,
4940+ ]):
4941+ # unsqueeze A to use similar shape semantics as Mamba-1
4942+ # (D is also unsqueezed, but for more straightforward broadcast internally)
4943+ data_torch = data_torch .reshape ((* data_torch .shape , 1 ))
4944+ elif self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_NORM , bid ):
4945+ d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4946+ d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4947+ n_group = self .hparams .get ("n_groups" , 1 )
4948+ data_torch = data_torch .reshape ((n_group , d_inner // n_group ))
4949+
4950+ if name .endswith (".A_log" ):
4951+ logger .debug ("A_log --> A ==> " + new_name )
4952+ data_torch = - torch .exp (data_torch )
4953+
4954+ yield (new_name , data_torch )
4955+
4956+
48584957@ModelBase .register ("CohereForCausalLM" )
48594958class CommandR2Model (TextModel ):
48604959 model_arch = gguf .MODEL_ARCH .COMMAND_R
@@ -6615,12 +6714,20 @@ def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> st
66156714 # maybe we should fallback to text model's arch in that case, since not many models have both
66166715 text_config = hparams .get ("text_config" , {})
66176716 vision_config = hparams .get ("vision_config" , {})
6618- arch = hparams ["architectures" ][0 ]
6717+ arch = None
6718+ if (arches := hparams .get ("architectures" )) is not None and len (arches ) > 0 :
6719+ arch = arches [0 ]
6720+ elif "ssm_cfg" in hparams :
6721+ # For non-hf Mamba and Mamba2 models
6722+ arch = hparams ["ssm_cfg" ].get ("layer" , "Mamba" ) + "ForCausalLM"
6723+
66196724 # if "architectures" is found in the sub-config, use that instead
66206725 if model_type == ModelType .TEXT and text_config .get ("architectures" ) is not None :
66216726 arch = text_config ["architectures" ][0 ]
66226727 elif model_type == ModelType .MMPROJ and vision_config .get ("architectures" ) is not None :
66236728 arch = vision_config ["architectures" ][0 ]
6729+ if arch is None :
6730+ raise ValueError ("Failed to detect model architecture" )
66246731 return arch
66256732
66266733
0 commit comments