@@ -1944,16 +1944,14 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
19441944 && ggml_nbytes (src0) != ggml_backend_buffer_get_alloc_size (src0->buffer , src0) && src0->view_src ;
19451945
19461946 bool use_mul_mat_vec = (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16)
1947- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
1948- && src0->ne [0 ] % 2 == 0 && src1->ne [1 ] == 1 ;
1947+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
19491948 bool use_mul_mat_vec_q = ggml_is_quantized (src0->type ) && !bad_padding_clear
19501949 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
19511950 && src1->ne [1 ] <= MMVQ_MAX_BATCH_SIZE;
19521951 bool use_mul_mat_q = ggml_is_quantized (src0->type ) && !bad_padding_clear
19531952 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
19541953
1955- bool any_gpus_with_slow_fp16 = false ;
1956- bool any_gpus_without_fp16_mma = false ;
1954+ bool any_gpus_with_slow_fp16 = false ;
19571955
19581956 if (split) {
19591957 ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer ->buft ->context ;
@@ -1964,16 +1962,16 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
19641962 continue ;
19651963 }
19661964
1967- const int cc = ggml_cuda_info ().devices [id].cc ;
1968- use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq (src0->type , cc, src1->ne [1 ]);
1969- any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || ! fast_fp16_hardware_available (cc );
1970- any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available (cc);
1965+ const int cc = ggml_cuda_info ().devices [id].cc ;
1966+ use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq (src0->type , cc, src1->ne [1 ]);
1967+ use_mul_mat_vec = use_mul_mat_vec && ggml_cuda_should_use_mmv (src0-> type , cc, src0-> ne , src1-> ne [ 1 ] );
1968+ any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available (cc);
19711969 }
19721970 } else {
1973- const int cc = ggml_cuda_info ().devices [ctx.device ].cc ;
1974- use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq (src0->type , cc, src1->ne [1 ]);
1975- any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || ! fast_fp16_hardware_available (cc );
1976- any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available (cc);
1971+ const int cc = ggml_cuda_info ().devices [ctx.device ].cc ;
1972+ use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq (src0->type , cc, src1->ne [1 ]);
1973+ use_mul_mat_vec = use_mul_mat_vec && ggml_cuda_should_use_mmv (src0-> type , cc, src0-> ne , src1-> ne [ 1 ] );
1974+ any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available (cc);
19771975 }
19781976
19791977 // debug helpers
@@ -1984,7 +1982,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
19841982 // printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
19851983 // printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
19861984
1987- if (!split && use_mul_mat_vec && (src0-> ne [ 1 ] <= MMV_MAX_ROWS || any_gpus_without_fp16_mma) ) {
1985+ if (!split && use_mul_mat_vec) {
19881986 // the custom F16 vector kernel can be used over batched cuBLAS GEMM
19891987 // but this is only faster for GPUs without tensor cores or with a thin src0 matrix (particularly KQV in attention)
19901988 ggml_cuda_mul_mat_vec (ctx, src0, src1, nullptr , dst);
0 commit comments