Skip to content

Commit c8fad12

Browse files
committed
Revert "rocBLAS: Avoid fp32->fp16->fp32 conversion on cdna (ggml-org#11356)"
This reverts commit 9fbadae.
1 parent f0e6b2a commit c8fad12

File tree

2 files changed

+24
-39
lines changed

2 files changed

+24
-39
lines changed

ggml/src/ggml-cuda/ggml-cuda.cu

Lines changed: 23 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -1083,9 +1083,7 @@ static void ggml_cuda_op_mul_mat_cublas(
10831083

10841084
const int compute_capability = ggml_cuda_info().devices[id].cc;
10851085

1086-
const bool use_fp16 = (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT;
1087-
1088-
if (compute_capability >= GGML_CUDA_CC_VOLTA && use_fp16) {
1086+
if (compute_capability >= GGML_CUDA_CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
10891087
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
10901088
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
10911089
if (src0->type != GGML_TYPE_F16) {
@@ -1106,38 +1104,28 @@ static void ggml_cuda_op_mul_mat_cublas(
11061104
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
11071105
}
11081106
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
1107+
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
11091108

1110-
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
1109+
const half alpha_f16 = 1.0f;
1110+
const half beta_f16 = 0.0f;
11111111

1112-
if (compute_capability == GGML_CUDA_CC_CDNA) {
1113-
const float alpha = 1.0f;
1114-
const float beta = 0.0f;
1115-
CUBLAS_CHECK(
1116-
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
1117-
row_diff, src1_ncols, ne10,
1118-
&alpha, src0_ptr, CUDA_R_16F, ne00,
1119-
src1_ptr, CUDA_R_16F, ne10,
1120-
&beta, dst_dd_i, CUDA_R_32F, ldc,
1121-
CUBLAS_COMPUTE_32F,
1122-
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
1123-
} else {
1124-
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
1125-
1126-
const half alpha_f16 = 1.0f;
1127-
const half beta_f16 = 0.0f;
1112+
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
1113+
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
1114+
cu_compute_type = CUBLAS_COMPUTE_32F;
1115+
}
11281116

1129-
CUBLAS_CHECK(
1130-
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
1131-
row_diff, src1_ncols, ne10,
1132-
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
1133-
src1_ptr, CUDA_R_16F, ne10,
1134-
&beta_f16, dst_dd_i, CUDA_R_16F, ldc,
1135-
CUBLAS_COMPUTE_16F,
1136-
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
1117+
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
1118+
CUBLAS_CHECK(
1119+
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
1120+
row_diff, src1_ncols, ne10,
1121+
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
1122+
src1_ptr, CUDA_R_16F, ne10,
1123+
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
1124+
cu_compute_type,
1125+
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
11371126

1138-
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
1139-
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
1140-
}
1127+
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
1128+
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
11411129
} else {
11421130
ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
11431131
ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
@@ -1626,6 +1614,10 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
16261614
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
16271615
cudaDataType_t cu_data_type = CUDA_R_16F;
16281616

1617+
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
1618+
cu_compute_type = CUBLAS_COMPUTE_32F;
1619+
}
1620+
16291621
// dst strides
16301622
size_t nbd2 = dst->nb[2];
16311623
size_t nbd3 = dst->nb[3];
@@ -1654,12 +1646,6 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
16541646
beta = &beta_f32;
16551647
}
16561648

1657-
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
1658-
cu_compute_type = CUBLAS_COMPUTE_32F;
1659-
alpha = &alpha_f32;
1660-
beta = &beta_f32;
1661-
}
1662-
16631649
GGML_ASSERT(ne12 % ne02 == 0);
16641650
GGML_ASSERT(ne13 % ne03 == 0);
16651651

ggml/src/ggml-cuda/mmvq.cu

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -142,7 +142,7 @@ static void mul_mat_vec_q_cuda(
142142
int64_t nwarps = 1;
143143
int64_t rows_per_cuda_block = 1;
144144

145-
if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_RDNA2) { // NVIDIA and AMD older than RDNA2
145+
if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_CDNA || ggml_cuda_info().devices[id].cc == GGML_CUDA_CC_RDNA1) { // NVIDIA and AMD older than RDNA2 but not CDNA
146146
switch(ncols_y) {
147147
case 1:
148148
nwarps = 4;
@@ -166,7 +166,6 @@ static void mul_mat_vec_q_cuda(
166166
break;
167167
}
168168
}
169-
170169
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
171170
const dim3 block_nums(nblocks, 1, 1);
172171
const dim3 block_dims(WARP_SIZE, nwarps, 1);

0 commit comments

Comments
 (0)