@@ -1944,14 +1944,16 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
19441944 && ggml_nbytes (src0) != ggml_backend_buffer_get_alloc_size (src0->buffer , src0) && src0->view_src ;
19451945
19461946 bool use_mul_mat_vec = (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16)
1947- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
1947+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
1948+ && src0->ne [0 ] % 2 == 0 && src1->ne [1 ] == 1 ;
19481949 bool use_mul_mat_vec_q = ggml_is_quantized (src0->type ) && !bad_padding_clear
19491950 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
19501951 && src1->ne [1 ] <= MMVQ_MAX_BATCH_SIZE;
19511952 bool use_mul_mat_q = ggml_is_quantized (src0->type ) && !bad_padding_clear
19521953 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
19531954
1954- bool any_gpus_with_slow_fp16 = false ;
1955+ bool any_gpus_with_slow_fp16 = false ;
1956+ bool any_gpus_without_fp16_mma = false ;
19551957
19561958 if (split) {
19571959 ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer ->buft ->context ;
@@ -1962,16 +1964,16 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
19621964 continue ;
19631965 }
19641966
1965- const int cc = ggml_cuda_info ().devices [id].cc ;
1966- use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq (src0->type , cc, src1->ne [1 ]);
1967- use_mul_mat_vec = use_mul_mat_vec && ggml_cuda_should_use_mmv (src0-> type , cc, src0-> ne , src1-> ne [ 1 ] );
1968- any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available (cc);
1967+ const int cc = ggml_cuda_info ().devices [id].cc ;
1968+ use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq (src0->type , cc, src1->ne [1 ]);
1969+ any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || ! fast_fp16_hardware_available (cc );
1970+ any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available (cc);
19691971 }
19701972 } else {
1971- const int cc = ggml_cuda_info ().devices [ctx.device ].cc ;
1972- use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq (src0->type , cc, src1->ne [1 ]);
1973- use_mul_mat_vec = use_mul_mat_vec && ggml_cuda_should_use_mmv (src0-> type , cc, src0-> ne , src1-> ne [ 1 ] );
1974- any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available (cc);
1973+ const int cc = ggml_cuda_info ().devices [ctx.device ].cc ;
1974+ use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq (src0->type , cc, src1->ne [1 ]);
1975+ any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || ! fast_fp16_hardware_available (cc );
1976+ any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available (cc);
19751977 }
19761978
19771979 // debug helpers
@@ -1982,7 +1984,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
19821984 // printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
19831985 // printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
19841986
1985- if (!split && use_mul_mat_vec) {
1987+ if (!split && use_mul_mat_vec && (src0-> ne [ 1 ] <= MMV_MAX_ROWS || any_gpus_without_fp16_mma) ) {
19861988 // the custom F16 vector kernel can be used over batched cuBLAS GEMM
19871989 // but this is only faster for GPUs without tensor cores or with a thin src0 matrix (particularly KQV in attention)
19881990 ggml_cuda_mul_mat_vec (ctx, src0, src1, nullptr , dst);
0 commit comments