@@ -87,15 +87,38 @@ static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) {
8787 return tensor->ne [dim];
8888}
8989
90+ template <typename Variant, typename Ret, typename ... Args, std::size_t ... Is>
91+ constexpr bool variant_any_invocable_impl (std::index_sequence<Is...>) {
92+ using V = std::remove_reference_t <Variant>;
93+ return (std::is_invocable_r_v<
94+ Ret,
95+ std::variant_alternative_t <Is, V>,
96+ Args...> || ...);
97+ }
98+
99+ template <typename Variant, typename Ret, typename ... Args>
100+ constexpr bool variant_any_invocable_v =
101+ variant_any_invocable_impl<Variant, Ret, Args...>(
102+ std::make_index_sequence<
103+ std::variant_size_v<std::remove_reference_t <Variant>>>{});
104+
90105template <typename Ret, typename Variant, typename ... Args>
91- static Ret variant_call (const Variant & var, Args&&... args) {
92- return std::visit ([&](auto && func) -> Ret {
93- if constexpr (std::is_invocable_r_v<Ret, decltype (func), Args...>) {
94- return func (std::forward<Args>(args)...);
95- } else {
96- throw std::runtime_error (" Invalid function type in variant_call" );
97- }
98- }, var);
106+ static inline Ret variant_call (Variant && var, Args&&... args) {
107+ static_assert (variant_any_invocable_v<std::remove_reference_t <Variant>, Ret, Args...>,
108+ " No alternative in Variant is invocable with the provided arguments and return type." );
109+
110+ return std::visit (
111+ [&](auto && f) -> Ret {
112+ using F = std::decay_t <decltype (f)>;
113+ if constexpr (std::is_invocable_r_v<Ret, F, Args...>) {
114+ return std::invoke (std::forward<decltype (f)>(f), std::forward<Args>(args)...);
115+ } else {
116+ GGML_ABORT (" Invalid function type in variant_call" );
117+ GGML_UNREACHABLE ();
118+ }
119+ },
120+ std::forward<Variant>(var)
121+ );
99122}
100123
101124namespace ggml ::cpu::kleidiai {
@@ -138,7 +161,10 @@ class tensor_traits : public ggml::cpu::tensor_traits {
138161 if (kernels->rhs_type == GGML_TYPE_Q4_0) {
139162 size = variant_call<size_t >(lhs_info->packed_size , m, k, QK4_0, mr, kr, sr);
140163 } else if (kernels->rhs_type == GGML_TYPE_F16) {
141- size = variant_call<size_t >(lhs_info->packed_size , m, k, mr, kr, sr) +
164+ const int64_t lhs_batch_size0 = op->src [1 ]->ne [2 ];
165+ const int64_t rhs_batch_size0 = op->src [0 ]->ne [2 ];
166+ const int64_t r = lhs_batch_size0 / rhs_batch_size0;
167+ size = variant_call<size_t >(lhs_info->packed_size , m * r, k, mr, kr, sr) +
142168 variant_call<size_t >(kernels->rhs_info .packed_size , n, k) +
143169 k * n * sizeof (float ) + n * sizeof (float );
144170 } else {
@@ -148,7 +174,6 @@ class tensor_traits : public ggml::cpu::tensor_traits {
148174 return true ;
149175 }
150176
151-
152177 bool compute_forward (struct ggml_compute_params * params, struct ggml_tensor * dst) override {
153178 if (dst->op == GGML_OP_MUL_MAT) {
154179 if (dst->src [0 ]->type == GGML_TYPE_Q4_0) {
@@ -165,8 +190,6 @@ class tensor_traits : public ggml::cpu::tensor_traits {
165190 }
166191
167192 bool compute_forward_fp16 (ggml_compute_params * params, struct ggml_tensor * dst) {
168- static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
169-
170193 const ggml_tensor * src0 = dst->src [0 ];
171194 const ggml_tensor * src1 = dst->src [1 ];
172195
@@ -175,7 +198,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
175198 ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels (ctx.features , dst);
176199 GGML_ASSERT (kernels);
177200
178- bool is_gemv = src1->ne [1 ] == 1 ;
201+ const bool is_gemv = src1->ne [1 ] == 1 ;
179202 kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm ;
180203 lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info ;
181204 GGML_ASSERT (kernel);
@@ -185,27 +208,30 @@ class tensor_traits : public ggml::cpu::tensor_traits {
185208
186209 const int64_t lhs_batch_size0 = ne12;
187210 const int64_t rhs_batch_size0 = ne02;
188- const int64_t batch_size = rhs_batch_size0 ;
211+ const int64_t batch_size = lhs_batch_size0 ;
189212
213+ GGML_ASSERT (rhs_batch_size0 > 0 );
214+ GGML_ASSERT (lhs_batch_size0 % rhs_batch_size0 == 0 );
190215 const int64_t r = lhs_batch_size0 / rhs_batch_size0;
191216
192- const int64_t m = ne11 * r;
193- const int64_t n = ne01;
194- const int64_t k = ne00;
217+ const int64_t m_group = ne11;
218+ const int64_t m = m_group;
219+ const int64_t n = ne01;
220+ const int64_t k = ne00;
195221
196222 const size_t lhs_stride = src1->nb [1 ];
197223 const size_t rhs_stride = src0->nb [1 ];
198224 const size_t dst_stride = dst->nb [1 ];
199225
200- const int64_t mr = static_cast < int64_t >( kernel->get_mr () );
201- const int64_t nr = static_cast < int64_t >( kernel->get_nr () );
202- const int64_t kr = static_cast < int64_t >( kernel->get_kr () );
203- const int64_t sr = static_cast < int64_t >( kernel->get_sr () );
226+ const int64_t mr = ( int64_t ) kernel->get_mr ();
227+ const int64_t nr = ( int64_t ) kernel->get_nr ();
228+ const int64_t kr = ( int64_t ) kernel->get_kr ();
229+ const int64_t sr = ( int64_t ) kernel->get_sr ();
204230
205- const size_t lhs_packed_size = variant_call<size_t >(lhs_info->packed_size , m, k, mr, kr, sr);
206- const size_t rhs_packed_size = variant_call<size_t >(kernels->rhs_info .packed_size , n, k);
207- const size_t kxn_size = k * n * sizeof (float );
208- const size_t bias_size = n * sizeof (float );
231+ const size_t lhs_packed_size = variant_call<size_t >(lhs_info->packed_size , ( size_t ) m, ( size_t ) k, ( size_t ) mr, ( size_t ) kr, ( size_t ) sr);
232+ const size_t rhs_packed_size = variant_call<size_t >(kernels->rhs_info .packed_size , ( size_t ) n, ( size_t ) k);
233+ const size_t kxn_size = ( size_t ) k * ( size_t ) n * sizeof (float );
234+ const size_t bias_size = ( size_t ) n * sizeof (float );
209235
210236 const size_t wsize_required = lhs_packed_size + rhs_packed_size + kxn_size + bias_size;
211237 GGML_ASSERT (wsize_required <= params->wsize );
@@ -216,82 +242,102 @@ class tensor_traits : public ggml::cpu::tensor_traits {
216242 uint8_t * bias = rhs_kxn + kxn_size;
217243
218244 for (int64_t batch_idx = 0 ; batch_idx < batch_size; ++batch_idx) {
219- const uint8_t * lhs_batch = static_cast < const uint8_t *>(src1-> data ) + batch_idx * m * lhs_stride ;
220- const uint8_t * rhs_batch = static_cast <const uint8_t *>(src0->data ) + batch_idx * n * rhs_stride ;
221- uint8_t * dst_batch = static_cast <uint8_t *>(dst->data ) + batch_idx * m * dst_stride ;
245+ const int64_t rhs_batch_idx = batch_idx / r ;
246+ const uint8_t * rhs_batch_base = static_cast <const uint8_t *>(src0->data ) + rhs_batch_idx * src0-> nb [ 2 ] ;
247+ uint8_t * dst_batch_base = static_cast <uint8_t *>(dst->data ) + batch_idx * dst-> nb [ 2 ] ;
222248
223- // LHS packing
249+ // LHS packing (threaded over m, honoring mr alignment and KV groups)
224250 {
225251 const int64_t m_roundup_mr = kai_roundup (m, mr);
226252 const int64_t num_threads = KAI_MIN (m_roundup_mr / mr, nth);
227253
228254 if (ith < num_threads) {
229- const int64_t num_m_per_thread0 = round_down (m_roundup_mr / num_threads, mr);
255+ const int64_t num_m_per_thread0 = round_down (( size_t )( m_roundup_mr / num_threads), ( size_t ) mr);
230256 const int64_t num_m_per_threadN_1 = m - (num_threads - 1 ) * num_m_per_thread0;
231257
232- const int64_t m_start = ith * num_m_per_thread0;
233- const int64_t num_m_per_thread = (ith == num_threads - 1 ) ? num_m_per_threadN_1 : num_m_per_thread0;
258+ const int64_t m_start = ith * num_m_per_thread0;
259+ const int64_t m_count = (ith == num_threads - 1 ) ? num_m_per_threadN_1 : num_m_per_thread0;
260+
261+ // Base packed offset (aligned) and per-row stride in bytes
262+ const size_t base_packed_off = variant_call<size_t >(
263+ lhs_info->get_packed_offset , (size_t )m_start, (size_t )k, (size_t )mr, (size_t )kr, (size_t )sr);
264+ const size_t next_block_off = variant_call<size_t >(
265+ lhs_info->get_packed_offset , (size_t )(m_start + mr), (size_t )k, (size_t )mr, (size_t )kr, (size_t )sr);
266+ const size_t row_stride_bytes = (next_block_off - base_packed_off) / (size_t )mr;
267+
268+ int64_t remaining = m_count;
269+ int64_t cur = m_start;
270+
271+ while (remaining > 0 ) {
272+ const int64_t row_in_group = cur;
273+ const int64_t avail = m_group - row_in_group;
274+ const int64_t take = std::min (avail, remaining);
234275
235- const size_t lhs_offset = variant_call<size_t >(kernels->gemm .get_lhs_offset , m_start, lhs_stride);
236- const size_t lhs_packed_offset = variant_call<size_t >(lhs_info->get_packed_offset , m_start, k, mr, kr, sr);
276+ const uint8_t * lhs_batch_base = static_cast <const uint8_t *>(src1->data ) + batch_idx * src1->nb [2 ];
277+ const void * src_ptr = lhs_batch_base + (size_t )row_in_group * lhs_stride;
278+ const size_t dst_off = base_packed_off + (size_t )(cur - m_start) * row_stride_bytes;
279+ void * dst_ptr = lhs_packed + dst_off;
237280
238- const void * src_ptr = static_cast <const uint8_t *>(lhs_batch) + lhs_offset;
239- void * dst_ptr = static_cast <uint8_t *>(lhs_packed) + lhs_packed_offset;
281+ variant_call<void >(lhs_info->pack_func ,
282+ (size_t )take, (size_t )k, (size_t )mr, (size_t )kr, (size_t )sr,
283+ /* m_idx_start*/ 0 , src_ptr, lhs_stride, dst_ptr);
240284
241- variant_call<void >(lhs_info->pack_func , num_m_per_thread, k, mr, kr, sr, 0 , src_ptr, lhs_stride, dst_ptr);
285+ cur += take;
286+ remaining -= take;
287+ }
242288 }
243289 }
244290
245- // RHS packing
246- if (first_to_arrive.test_and_set (std::memory_order_acquire) == false ) {
247- // First thread to reach this point handles RHS packing
248- memset (bias, 0 , n * sizeof (float ));
249- transpose_f32kxn_f16nxk (n, k, reinterpret_cast <float *>(rhs_kxn),
250- reinterpret_cast <const uint16_t *>(rhs_batch), rhs_stride);
251-
252- variant_call<void >(kernels->rhs_info .pack_func , 1 , n, k, nr, kr, sr, n * sizeof (float ),
253- rhs_kxn, bias, nullptr , rhs_packed, 0 , nullptr );
291+ // RHS packing (single thread), then synchronize
292+ if (ith == 0 ) {
293+ memset (bias, 0 , (size_t )n * sizeof (float ));
294+ transpose_f32kxn_f16nxk ((size_t )n, (size_t )k,
295+ reinterpret_cast <float *>(rhs_kxn),
296+ reinterpret_cast <const uint16_t *>(rhs_batch_base),
297+ rhs_stride);
298+
299+ variant_call<void >(kernels->rhs_info .pack_func ,
300+ /* num_groups*/ 1 , (size_t )n, (size_t )k, (size_t )nr, (size_t )kr, (size_t )sr,
301+ /* rhs_stride (bytes)*/ (size_t )(n * sizeof (float )),
302+ rhs_kxn, bias, nullptr , rhs_packed, /* extra_bytes*/ 0 , /* params*/ nullptr );
254303 }
255304
256305 ggml_barrier (params->threadpool );
257306
258- first_to_arrive.clear (std::memory_order_release);
259-
260- // Perform the matmul
307+ // Matmul (threaded over n)
261308 {
262- const int64_t m_to_process = m;
263- const int64_t m_start = 0 ;
264-
265- const int64_t n_step = static_cast <int64_t >(kernel->get_n_step ());
266- int64_t num_threads = KAI_MIN (n / n_step, nth);
267- if (num_threads <= 0 ) {
268- num_threads = 1 ;
309+ const int64_t n_step = (int64_t ) kernel->get_n_step ();
310+ int64_t num_threads_n = KAI_MIN (n / n_step, nth);
311+ if (num_threads_n <= 0 ) {
312+ num_threads_n = 1 ;
269313 }
270314
271- if (ith < num_threads ) {
272- const int64_t num_n_per_thread0 = round_down (n / num_threads, n_step);
273- const int64_t num_n_per_threadN_1 = n - (num_threads - 1 ) * num_n_per_thread0;
315+ if (ith < num_threads_n ) {
316+ const int64_t num_n_per_thread0 = round_down (( size_t )( n / num_threads_n), ( size_t ) n_step);
317+ const int64_t num_n_per_threadN_1 = n - (num_threads_n - 1 ) * num_n_per_thread0;
274318
275319 const int64_t n_start = ith * num_n_per_thread0;
276- const int64_t n_to_process = (ith == num_threads - 1 ) ? num_n_per_threadN_1 : num_n_per_thread0;
320+ const int64_t n_to_process = (ith == num_threads_n - 1 ) ? num_n_per_threadN_1 : num_n_per_thread0;
277321
278- const size_t lhs_packed_offset = variant_call<size_t >(kernel->get_lhs_offset , m_start, k);
279- const size_t rhs_packed_offset = variant_call<size_t >(kernel->get_rhs_packed_offset , n_start, k);
280- const size_t dst_offset = kernel->get_dst_offset (m_start, n_start, dst_stride);
322+ // LHS packed base at row 0 (consistent with packing above)
323+ const size_t lhs_packed_offset0 = variant_call<size_t >(
324+ lhs_info->get_packed_offset , (size_t )0 , (size_t )k, (size_t )mr, (size_t )kr, (size_t )sr);
325+ const size_t rhs_packed_offset = variant_call<size_t >(kernel->get_rhs_packed_offset , (size_t )n_start, (size_t )k);
326+ const size_t dst_offset = kernel->get_dst_offset ((size_t )0 , (size_t )n_start, dst_stride);
281327
282- const void * lhs_ptr = lhs_packed + lhs_packed_offset ;
328+ const void * lhs_ptr = lhs_packed + lhs_packed_offset0 ;
283329 const void * rhs_ptr = rhs_packed + rhs_packed_offset;
284- float * dst_ptr = reinterpret_cast <float *>(dst_batch + dst_offset);
330+ float * dst_ptr = reinterpret_cast <float *>(dst_batch_base + dst_offset);
285331
286- variant_call<void >(kernel->run_kernel , m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof (float ), -FLT_MAX, FLT_MAX);
332+ variant_call<void >(kernel->run_kernel ,
333+ (size_t )m, (size_t )n_to_process, (size_t )k,
334+ lhs_ptr, rhs_ptr,
335+ dst_ptr, dst_stride, sizeof (float ),
336+ -FLT_MAX, FLT_MAX);
287337 }
288338 }
289339
290340 if (batch_idx != batch_size - 1 ) {
291- // This barrier is necessary when the batch size is larger than 1. While processing a batch,
292- // the work data buffer (params->wdata) is used as temporary storage which means that only
293- // a single batch can be processed at any given time. No barrier is needed for the last
294- // batch since GGML inserts a barrier between the execution of every operator.
295341 ggml_barrier (params->threadpool );
296342 }
297343 }
0 commit comments