diff --git a/quickstart/client_code/payments.txt b/quickstart/client_code/payments.txt new file mode 100644 index 00000000..d8dad0e1 --- /dev/null +++ b/quickstart/client_code/payments.txt @@ -0,0 +1 @@ +yuvaraj sent 1 \ No newline at end of file diff --git a/quickstart/client_code/requirements.txt b/quickstart/client_code/requirements.txt new file mode 100644 index 00000000..258dcfbb --- /dev/null +++ b/quickstart/client_code/requirements.txt @@ -0,0 +1,12 @@ +langchain==0.2.6 +langchain-chroma==0.1.2 +langchain-community==0.2.6 +langchain-core==0.2.11 +langchain-huggingface==0.0.3 +langchain-text-splitters==0.2.2 +langsmith==0.1.83 +py-nillion-client +nada-dsl +nillion-python-helpers +python-dotenv==1.0.0 +cosmpy>=0.9.2 diff --git a/quickstart/client_code/run_my_first_program.py b/quickstart/client_code/run_my_first_program.py index e69de29b..b8e61d85 100644 --- a/quickstart/client_code/run_my_first_program.py +++ b/quickstart/client_code/run_my_first_program.py @@ -0,0 +1,29 @@ +from langchain_community.document_loaders import TextLoader +from langchain_huggingface import HuggingFaceEmbeddings + +from langchain_text_splitters import CharacterTextSplitter +from langchain_chroma import Chroma +from nada_dsl import * + +# Load the document and split it into chunks + + +def nada_main(): + loader = TextLoader("payments.txt") + documents = loader.load() + text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) + docs = text_splitter.split_documents(documents) + embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") + db = Chroma.from_documents(docs, embedding_function) + print(docs[0].page_content) + vector = embedding_function.embed_query(docs[0].page_content) + storage_party = Party(name=vector) + secret_vector = SecretInteger(Input(name="vector", party=storage_party)) + stored_vector = Output(secret_vector, "stored_vector", storage_party) + + return [stored_vector] + +# Execute the nada_main function to store the vector +stored_results = nada_main() +print(stored_results) + diff --git a/quickstart/client_code/vector.py b/quickstart/client_code/vector.py new file mode 100644 index 00000000..b8e61d85 --- /dev/null +++ b/quickstart/client_code/vector.py @@ -0,0 +1,29 @@ +from langchain_community.document_loaders import TextLoader +from langchain_huggingface import HuggingFaceEmbeddings + +from langchain_text_splitters import CharacterTextSplitter +from langchain_chroma import Chroma +from nada_dsl import * + +# Load the document and split it into chunks + + +def nada_main(): + loader = TextLoader("payments.txt") + documents = loader.load() + text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) + docs = text_splitter.split_documents(documents) + embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") + db = Chroma.from_documents(docs, embedding_function) + print(docs[0].page_content) + vector = embedding_function.embed_query(docs[0].page_content) + storage_party = Party(name=vector) + secret_vector = SecretInteger(Input(name="vector", party=storage_party)) + stored_vector = Output(secret_vector, "stored_vector", storage_party) + + return [stored_vector] + +# Execute the nada_main function to store the vector +stored_results = nada_main() +print(stored_results) +