@@ -8,66 +8,66 @@ Automatic forecasting tools search for the best parameters and select
88the best possible model for a series of time series. These tools are
99useful for large collections of univariate time series.
1010
11- | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
11+ | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
1212| :-----| :----------:| :----------------:| :---------------:| :--------------------:|
13- | [ ` AutoARIMA ` ] ( ../../ models.html#autoarima) | ✅ | ✅ | ✅ | ✅ |
14- | [ ` AutoETS ` ] ( ../../ models.html#autoets) | ✅ | ✅ | ✅ | ✅ |
15- | [ ` AutoCES ` ] ( ../../ models.html#autoces) | ✅ | ✅ | ✅ | ✅ |
16- | [ ` AutoTheta ` ] ( ../../ models.html#autotheta) | ✅ | ✅ | ✅ | ✅ |
13+ | [ ` AutoARIMA ` ] ( models.html#autoarima ) | ✅ | ✅ | ✅ | ✅ |
14+ | [ ` AutoETS ` ] ( models.html#autoets ) | ✅ | ✅ | ✅ | ✅ |
15+ | [ ` AutoCES ` ] ( models.html#autoces ) | ✅ | ✅ | ✅ | ✅ |
16+ | [ ` AutoTheta ` ] ( models.html#autotheta ) | ✅ | ✅ | ✅ | ✅ |
1717
1818## ARIMA Family
1919
2020These models exploit the existing autocorrelations in the time series.
2121
22- | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
22+ | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
2323| :-----| :----------:| :----------------:| :---------------:| :--------------------:|
24- | [ ` ARIMA ` ] ( ../../ models.html#arima) | ✅ | ✅ | ✅ | ✅ |
25- | [ ` AutoRegressive ` ] ( ../../ models.html#autoregressive) | ✅ | ✅ | ✅ | ✅ |
24+ | [ ` ARIMA ` ] ( models.html#arima ) | ✅ | ✅ | ✅ | ✅ |
25+ | [ ` AutoRegressive ` ] ( models.html#autoregressive ) | ✅ | ✅ | ✅ | ✅ |
2626
2727## Theta Family
2828
2929Fit two theta lines to a deseasonalized time series, using different
3030techniques to obtain and combine the two theta lines to produce the
3131final forecasts.
3232
33- | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
33+ | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
3434| :-----| :----------:| :----------------:| :---------------:| :--------------------:|
35- | [ ` Theta ` ] ( ../../ models.html#theta) | ✅ | ✅ | ✅ | ✅ |
36- | [ ` OptimizedTheta ` ] ( ../../ models.html#optimizedtheta) | ✅ | ✅ | ✅ | ✅ |
37- | [ ` DynamicTheta ` ] ( ../../ models.html#dynamictheta) | ✅ | ✅ | ✅ | ✅ |
38- | [ ` DynamicOptimizedTheta ` ] ( ../../ models.html#dynamicoptimizedtheta) | ✅ | ✅ | ✅ | ✅ |
35+ | [ ` Theta ` ] ( models.html#theta ) | ✅ | ✅ | ✅ | ✅ |
36+ | [ ` OptimizedTheta ` ] ( models.html#optimizedtheta ) | ✅ | ✅ | ✅ | ✅ |
37+ | [ ` DynamicTheta ` ] ( models.html#dynamictheta ) | ✅ | ✅ | ✅ | ✅ |
38+ | [ ` DynamicOptimizedTheta ` ] ( models.html#dynamicoptimizedtheta ) | ✅ | ✅ | ✅ | ✅ |
3939
4040## Multiple Seasonalities
4141
4242Suited for signals with more than one clear seasonality. Useful for
4343low-frequency data like electricity and logs.
4444
45- | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
45+ | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
4646| :-----| :----------:| :----------------:| :---------------:| :--------------------:|
47- | [ ` MSTL ` ] ( ../../ models.html#mstl) | ✅ | ✅ | ✅ | ✅ |
47+ | [ ` MSTL ` ] ( models.html#mstl ) | ✅ | ✅ | ✅ | ✅ |
4848
4949## GARCH and ARCH Models
5050
5151Suited for modeling time series that exhibit non-constant volatility
5252over time. The ARCH model is a particular case of GARCH.
5353
54- | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
54+ | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
5555| :-----| :----------:| :----------------:| :---------------:| :--------------------:|
56- | [ ` GARCH ` ] ( ../../ models.html#garch) | ✅ | ✅ | ✅ | ✅ |
57- | [ ` ARCH ` ] ( ../../ models.html#arch) | ✅ | ✅ | ✅ | ✅ |
56+ | [ ` GARCH ` ] ( models.html#garch ) | ✅ | ✅ | ✅ | ✅ |
57+ | [ ` ARCH ` ] ( models.html#arch ) | ✅ | ✅ | ✅ | ✅ |
5858
5959## Baseline Models
6060
6161Classical models for establishing baseline.
6262
63- | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
63+ | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
6464| :-----| :----------:| :----------------:| :---------------:| :--------------------:|
65- | [ ` HistoricAverage ` ] ( ../../ models.html#historicaverage) | ✅ | ✅ | ✅ | ✅ |
66- | [ ` Naive ` ] ( ../../ models.html#naive) | ✅ | ✅ | ✅ | ✅ |
67- | [ ` RandomWalkWithDrift ` ] ( ../../ models.html#randomwalkwithdrift) | ✅ | ✅ | ✅ | ✅ |
68- | [ ` SeasonalNaive ` ] ( ../../ models.html#seasonalnaive) | ✅ | ✅ | ✅ | ✅ |
69- | [ ` WindowAverage ` ] ( ../../ models.html#windowaverage) | ✅ | | | |
70- | [ ` SeasonalWindowAverage ` ] ( ../../ models.html#seasonalwindowaverage) | ✅ | | | |
65+ | [ ` HistoricAverage ` ] ( models.html#historicaverage ) | ✅ | ✅ | ✅ | ✅ |
66+ | [ ` Naive ` ] ( models.html#naive ) | ✅ | ✅ | ✅ | ✅ |
67+ | [ ` RandomWalkWithDrift ` ] ( models.html#randomwalkwithdrift ) | ✅ | ✅ | ✅ | ✅ |
68+ | [ ` SeasonalNaive ` ] ( models.html#seasonalnaive ) | ✅ | ✅ | ✅ | ✅ |
69+ | [ ` WindowAverage ` ] ( models.html#windowaverage ) | ✅ | | | |
70+ | [ ` SeasonalWindowAverage ` ] ( models.html#seasonalwindowaverage ) | ✅ | | | |
7171
7272## Exponential Smoothing
7373
@@ -76,23 +76,23 @@ decrease exponentially into the past. Suitable for data with clear trend
7676and/or seasonality. Use the ` SimpleExponential ` family for data with no
7777clear trend or seasonality.
7878
79- | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
79+ | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
8080| :-----| :----------:| :----------------:| :---------------:| :--------------------:|
81- | [ ` SimpleExponentialSmoothing ` ] ( ../../ models.html#simpleexponentialsmoothing) | ✅ | | | |
82- | [ ` SimpleExponentialSmoothingOptimized ` ] ( ../../ models.html#simpleexponentialsmoothingoptimized) | ✅ | | | |
83- | [ ` Holt ` ] ( ../../ models.html#holt) | ✅ | ✅ | ✅ | ✅ |
84- | [ ` HoltWinters ` ] ( ../../ models.html#holtwinters) | ✅ | ✅ | ✅ | ✅ |
81+ | [ ` SimpleExponentialSmoothing ` ] ( models.html#simpleexponentialsmoothing ) | ✅ | | | |
82+ | [ ` SimpleExponentialSmoothingOptimized ` ] ( models.html#simpleexponentialsmoothingoptimized ) | ✅ | | | |
83+ | [ ` Holt ` ] ( models.html#holt ) | ✅ | ✅ | ✅ | ✅ |
84+ | [ ` HoltWinters ` ] ( models.html#holtwinters ) | ✅ | ✅ | ✅ | ✅ |
8585
8686## Sparse or Intermittent
8787
8888Suited for series with very few non-zero observations
8989
90- | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
90+ | Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
9191| :-----| :----------:| :----------------:| :---------------:| :--------------------:|
92- | [ ` ADIDA ` ] ( ../../ models.html#adida) | ✅ | | | |
93- | [ ` CrostonClassic ` ] ( ../../ models.html#crostonclassic) | ✅ | | | |
94- | [ ` CrostonOptimized ` ] ( ../../ models.html#crostonoptimized) | ✅ | | | |
95- | [ ` CrostonSBA ` ] ( ../../ models.html#crostonsba) | ✅ | | | |
96- | [ ` IMAPA ` ] ( ../../ models.html#imapa) | ✅ | | | |
97- | [ ` TSB ` ] ( ../../ models.html#tsb) | ✅ | | | |
92+ | [ ` ADIDA ` ] ( models.html#adida ) | ✅ | | | |
93+ | [ ` CrostonClassic ` ] ( models.html#crostonclassic ) | ✅ | | | |
94+ | [ ` CrostonOptimized ` ] ( models.html#crostonoptimized ) | ✅ | | | |
95+ | [ ` CrostonSBA ` ] ( models.html#crostonsba ) | ✅ | | | |
96+ | [ ` IMAPA ` ] ( models.html#imapa ) | ✅ | | | |
97+ | [ ` TSB ` ] ( models.html#tsb ) | ✅ | | | |
9898
0 commit comments