Skip to content

Commit 0f19f3c

Browse files
committed
Update documentation
1 parent e28d649 commit 0f19f3c

File tree

3 files changed

+45
-42
lines changed

3 files changed

+45
-42
lines changed

statsforecast/docs/contribute/step-by-step.html.mdx

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
1-
# Step-by-step Contribution Guide
2-
3-
> This document contains instructions for collaborating on the different
4-
> libraries of Nixtla.
1+
---
2+
title: Step-by-step Contribution Guide
3+
description: This document contains instructions for collaborating on the different libraries of Nixtla.
4+
---
55

66
Sometimes, diving into a new technology can be challenging and
77
overwhelming. We’ve been there too, and we’re more than ready to assist

statsforecast/docs/contribute/techstack.html.mdx

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,7 @@
1-
# Contributing Code to Nixtla Development
1+
---
2+
title: Contributing Code to Nixtla Development
3+
description: A guide on the technical skills and tools needed to contribute code to the Nixtla project.
4+
---
25

36
Curious about the skills required to contribute to the Nixtla project?
47

statsforecast/src/core/models_intro.html.mdx

Lines changed: 37 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -8,66 +8,66 @@ Automatic forecasting tools search for the best parameters and select
88
the best possible model for a series of time series. These tools are
99
useful for large collections of univariate time series.
1010

11-
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
11+
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
1212
|:-----|:----------:|:----------------:|:---------------:|:--------------------:|
13-
| [`AutoARIMA`](../../models.html#autoarima) |||||
14-
| [`AutoETS`](../../models.html#autoets) |||||
15-
| [`AutoCES`](../../models.html#autoces) |||||
16-
| [`AutoTheta`](../../models.html#autotheta) |||||
13+
| [`AutoARIMA`](models.html#autoarima) |||||
14+
| [`AutoETS`](models.html#autoets) |||||
15+
| [`AutoCES`](models.html#autoces) |||||
16+
| [`AutoTheta`](models.html#autotheta) |||||
1717

1818
## ARIMA Family
1919

2020
These models exploit the existing autocorrelations in the time series.
2121

22-
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
22+
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
2323
|:-----|:----------:|:----------------:|:---------------:|:--------------------:|
24-
| [`ARIMA`](../../models.html#arima) |||||
25-
| [`AutoRegressive`](../../models.html#autoregressive) |||||
24+
| [`ARIMA`](models.html#arima) |||||
25+
| [`AutoRegressive`](models.html#autoregressive) |||||
2626

2727
## Theta Family
2828

2929
Fit two theta lines to a deseasonalized time series, using different
3030
techniques to obtain and combine the two theta lines to produce the
3131
final forecasts.
3232

33-
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
33+
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
3434
|:-----|:----------:|:----------------:|:---------------:|:--------------------:|
35-
| [`Theta`](../../models.html#theta) |||||
36-
| [`OptimizedTheta`](../../models.html#optimizedtheta) |||||
37-
| [`DynamicTheta`](../../models.html#dynamictheta) |||||
38-
| [`DynamicOptimizedTheta`](../../models.html#dynamicoptimizedtheta) |||||
35+
| [`Theta`](models.html#theta) |||||
36+
| [`OptimizedTheta`](models.html#optimizedtheta) |||||
37+
| [`DynamicTheta`](models.html#dynamictheta) |||||
38+
| [`DynamicOptimizedTheta`](models.html#dynamicoptimizedtheta) |||||
3939

4040
## Multiple Seasonalities
4141

4242
Suited for signals with more than one clear seasonality. Useful for
4343
low-frequency data like electricity and logs.
4444

45-
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
45+
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
4646
|:-----|:----------:|:----------------:|:---------------:|:--------------------:|
47-
| [`MSTL`](../../models.html#mstl) |||||
47+
| [`MSTL`](models.html#mstl) |||||
4848

4949
## GARCH and ARCH Models
5050

5151
Suited for modeling time series that exhibit non-constant volatility
5252
over time. The ARCH model is a particular case of GARCH.
5353

54-
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
54+
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
5555
|:-----|:----------:|:----------------:|:---------------:|:--------------------:|
56-
| [`GARCH`](../../models.html#garch) |||||
57-
| [`ARCH`](../../models.html#arch) |||||
56+
| [`GARCH`](models.html#garch) |||||
57+
| [`ARCH`](models.html#arch) |||||
5858

5959
## Baseline Models
6060

6161
Classical models for establishing baseline.
6262

63-
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
63+
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
6464
|:-----|:----------:|:----------------:|:---------------:|:--------------------:|
65-
| [`HistoricAverage`](../../models.html#historicaverage) |||||
66-
| [`Naive`](../../models.html#naive) |||||
67-
| [`RandomWalkWithDrift`](../../models.html#randomwalkwithdrift) |||||
68-
| [`SeasonalNaive`](../../models.html#seasonalnaive) |||||
69-
| [`WindowAverage`](../../models.html#windowaverage) || | | |
70-
| [`SeasonalWindowAverage`](../../models.html#seasonalwindowaverage) || | | |
65+
| [`HistoricAverage`](models.html#historicaverage) |||||
66+
| [`Naive`](models.html#naive) |||||
67+
| [`RandomWalkWithDrift`](models.html#randomwalkwithdrift) |||||
68+
| [`SeasonalNaive`](models.html#seasonalnaive) |||||
69+
| [`WindowAverage`](models.html#windowaverage) || | | |
70+
| [`SeasonalWindowAverage`](models.html#seasonalwindowaverage) || | | |
7171

7272
## Exponential Smoothing
7373

@@ -76,23 +76,23 @@ decrease exponentially into the past. Suitable for data with clear trend
7676
and/or seasonality. Use the `SimpleExponential` family for data with no
7777
clear trend or seasonality.
7878

79-
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
79+
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
8080
|:-----|:----------:|:----------------:|:---------------:|:--------------------:|
81-
| [`SimpleExponentialSmoothing`](../../models.html#simpleexponentialsmoothing) || | | |
82-
| [`SimpleExponentialSmoothingOptimized`](../../models.html#simpleexponentialsmoothingoptimized) || | | |
83-
| [`Holt`](../../models.html#holt) |||||
84-
| [`HoltWinters`](../../models.html#holtwinters) |||||
81+
| [`SimpleExponentialSmoothing`](models.html#simpleexponentialsmoothing) || | | |
82+
| [`SimpleExponentialSmoothingOptimized`](models.html#simpleexponentialsmoothingoptimized) || | | |
83+
| [`Holt`](models.html#holt) |||||
84+
| [`HoltWinters`](models.html#holtwinters) |||||
8585

8686
## Sparse or Intermittent
8787

8888
Suited for series with very few non-zero observations
8989

90-
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
90+
| Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
9191
|:-----|:----------:|:----------------:|:---------------:|:--------------------:|
92-
| [`ADIDA`](../../models.html#adida) || | | |
93-
| [`CrostonClassic`](../../models.html#crostonclassic) || | | |
94-
| [`CrostonOptimized`](../../models.html#crostonoptimized) || | | |
95-
| [`CrostonSBA`](../../models.html#crostonsba) || | | |
96-
| [`IMAPA`](../../models.html#imapa) || | | |
97-
| [`TSB`](../../models.html#tsb) || | | |
92+
| [`ADIDA`](models.html#adida) || | | |
93+
| [`CrostonClassic`](models.html#crostonclassic) || | | |
94+
| [`CrostonOptimized`](models.html#crostonoptimized) || | | |
95+
| [`CrostonSBA`](models.html#crostonsba) || | | |
96+
| [`IMAPA`](models.html#imapa) || | | |
97+
| [`TSB`](models.html#tsb) || | | |
9898

0 commit comments

Comments
 (0)