Skip to content

Commit 992933d

Browse files
authored
Minor fixes (#1071)
1 parent 1ef6838 commit 992933d

File tree

3 files changed

+37
-33
lines changed

3 files changed

+37
-33
lines changed

nbs/docs/contribute/step-by-step.md

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
1-
# Step-by-step Contribution Guide
2-
3-
> This document contains instructions for collaborating on the different libraries of Nixtla.
1+
---
2+
title: Step-by-step Contribution Guide
3+
description: This document contains instructions for collaborating on the different libraries of Nixtla.
4+
---
45

56
Sometimes, diving into a new technology can be challenging and overwhelming. We've been there too, and we're more than ready to assist you with any issues you may encounter while following these steps. Don't hesitate to reach out to us on [Slack](https://join.slack.com/t/nixtlacommunity/shared_invite/zt-1pmhan9j5-F54XR20edHk0UtYAPcW4KQ). Just give fede a ping, and she'll be glad to assist you.
67

nbs/docs/contribute/techstack.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,7 @@
1-
# Contributing Code to Nixtla Development
1+
---
2+
title: Contributing Code to Nixtla Development
3+
description: A guide on the technical skills and tools needed to contribute code to the Nixtla project.
4+
---
25

36
Curious about the skills required to contribute to the Nixtla project?
47

nbs/src/core/models_intro.qmd

Lines changed: 29 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -8,84 +8,84 @@ Automatic forecasting tools search for the best parameters and select the best p
88

99
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
1010
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
11-
|[`AutoARIMA`](../../models.html#autoarima)||||||
12-
|[`AutoETS`](../../models.html#autoets)||||||
13-
|[`AutoCES`](../../models.html#autoces)||||||
14-
|[`AutoTheta`](../../models.html#autotheta)||||||
11+
|[`AutoARIMA`](models.html#autoarima)||||||
12+
|[`AutoETS`](models.html#autoets)||||||
13+
|[`AutoCES`](models.html#autoces)||||||
14+
|[`AutoTheta`](models.html#autotheta)||||||
1515

1616

1717
## ARIMA Family
1818
These models exploit the existing autocorrelations in the time series.
1919

2020
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
2121
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
22-
|[`ARIMA`](../../models.html#arima)||||||
23-
|[`AutoRegressive`](../../models.html#autoregressive)||||||
22+
|[`ARIMA`](models.html#arima)||||||
23+
|[`AutoRegressive`](models.html#autoregressive)||||||
2424

2525

2626
## Theta Family
2727
Fit two theta lines to a deseasonalized time series, using different techniques to obtain and combine the two theta lines to produce the final forecasts.
2828

2929
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
3030
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
31-
|[`Theta`](../../models.html#theta)||||||
32-
|[`OptimizedTheta`](../../models.html#optimizedtheta)||||||
33-
|[`DynamicTheta`](../../models.html#dynamictheta)||||||
34-
|[`DynamicOptimizedTheta`](../../models.html#dynamicoptimizedtheta)||||||
31+
|[`Theta`](models.html#theta)||||||
32+
|[`OptimizedTheta`](models.html#optimizedtheta)||||||
33+
|[`DynamicTheta`](models.html#dynamictheta)||||||
34+
|[`DynamicOptimizedTheta`](models.html#dynamicoptimizedtheta)||||||
3535

3636

3737
## Multiple Seasonalities
3838
Suited for signals with more than one clear seasonality. Useful for low-frequency data like electricity and logs.
3939

4040
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
4141
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
42-
|[`MSTL`](../../models.html#mstl)||||||
42+
|[`MSTL`](models.html#mstl)||||||
4343

4444

4545
## GARCH and ARCH Models
4646
Suited for modeling time series that exhibit non-constant volatility over time. The ARCH model is a particular case of GARCH.
4747

4848
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
4949
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
50-
|[`GARCH`](../../models.html#garch)||||||
51-
|[`ARCH`](../../models.html#arch)||||||
50+
|[`GARCH`](models.html#garch)||||||
51+
|[`ARCH`](models.html#arch)||||||
5252

5353

5454
## Baseline Models
5555
Classical models for establishing baseline.
5656

5757
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
5858
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
59-
|[`HistoricAverage`](../../models.html#historicaverage)||||||
60-
|[`Naive`](../../models.html#naive)||||||
61-
|[`RandomWalkWithDrift`](../../models.html#randomwalkwithdrift)||||||
62-
|[`SeasonalNaive`](../../models.html#seasonalnaive)||||||
63-
|[`WindowAverage`](../../models.html#windowaverage)||||||
64-
|[`SeasonalWindowAverage`](../../models.html#seasonalwindowaverage)||||||
59+
|[`HistoricAverage`](models.html#historicaverage)||||||
60+
|[`Naive`](models.html#naive)||||||
61+
|[`RandomWalkWithDrift`](models.html#randomwalkwithdrift)||||||
62+
|[`SeasonalNaive`](models.html#seasonalnaive)||||||
63+
|[`WindowAverage`](models.html#windowaverage)||||||
64+
|[`SeasonalWindowAverage`](models.html#seasonalwindowaverage)||||||
6565

6666

6767
## Exponential Smoothing
6868
Uses a weighted average of all past observations where the weights decrease exponentially into the past. Suitable for data with clear trend and/or seasonality. Use the `SimpleExponential` family for data with no clear trend or seasonality.
6969

7070
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
7171
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
72-
|[`SimpleExponentialSmoothing`](../../models.html#simpleexponentialsmoothing)||||||
73-
|[`SimpleExponentialSmoothingOptimized`](../../models.html#simpleexponentialsmoothingoptimized)||||||
74-
|[`Holt`](../../models.html#holt)||||||
75-
|[`HoltWinters`](../../models.html#holtwinters)||||||
72+
|[`SimpleExponentialSmoothing`](models.html#simpleexponentialsmoothing)||||||
73+
|[`SimpleExponentialSmoothingOptimized`](models.html#simpleexponentialsmoothingoptimized)||||||
74+
|[`Holt`](models.html#holt)||||||
75+
|[`HoltWinters`](models.html#holtwinters)||||||
7676

7777

7878
## Sparse or Intermittent
7979
Suited for series with very few non-zero observations
8080

8181
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
8282
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
83-
|[`ADIDA`](../../models.html#adida)||||||
84-
|[`CrostonClassic`](../../models.html#crostonclassic)||||||
85-
|[`CrostonOptimized`](../../models.html#crostonoptimized)||||||
86-
|[`CrostonSBA`](../../models.html#crostonsba)||||||
87-
|[`IMAPA`](../../models.html#imapa)||||||
88-
|[`TSB`](../../models.html#tsb)||||||
83+
|[`ADIDA`](models.html#adida)||||||
84+
|[`CrostonClassic`](models.html#crostonclassic)||||||
85+
|[`CrostonOptimized`](models.html#crostonoptimized)||||||
86+
|[`CrostonSBA`](models.html#crostonsba)||||||
87+
|[`IMAPA`](models.html#imapa)||||||
88+
|[`TSB`](models.html#tsb)||||||
8989

9090

9191

0 commit comments

Comments
 (0)