@@ -25,19 +25,42 @@ pressure ``p``, temperature ``T``, and density ``ρ``,
2525p = ρ R T .
2626```
2727
28- Above, `` R = ℛ / m `` is the specific gas constant given the
28+ Above, `` R ≡ ℛ / m `` is the specific gas constant given the
2929[ molar gas constant] ( https://en.wikipedia.org/wiki/Gas_constant )
30- `` ℛ ≈ 8.31\; \mathrm{J} \, \mathrm{K}^{-1} \, \mathrm{mol}^{-1} `` and molar mass `` m `` of the gas species under consideration.
30+ `` ℛ ≈ 8.31 \; \mathrm{J} \, \mathrm{K}^{-1} \, \mathrm{mol}^{-1} `` and molar mass `` m `` of the gas species under consideration.
3131
3232The [ first law of thermodynamics] ( https://en.wikipedia.org/wiki/First_law_of_thermodynamics ) ,
33- aka "conservation of energy", states that infinitesimal changes
34- in internal energy `` \mathrm{d} ê `` are related to infinitesimal changes
35- in temperature `` \mathrm{d} T `` and pressure `` \mathrm{d} p `` according to
33+ aka "conservation of energy", states that an infinitesimal change in the
34+ external heat changes `` \mathrm{d} \mathcal{Q} `` are related to infinitesimal changes
35+ in temperature `` \mathrm{d} T `` and pressure `` \mathrm{d} p `` according to: [ ^ 1 ]
3636
3737``` math
38- \mathrm{d} ê = cᵖ \mathrm{d} T - \frac{\mathrm{d} p}{\rho}
38+ \mathrm{d} \mathcal{Q} = cᵖ \mathrm{d} T - \frac{\mathrm{d} p}{\rho} ,
3939```
4040
41+ [ ^ 1 ] : The conservation of energy states that any external heat input into the gas must equal the sum
42+ of the change of the gas's internal energy and the work done by the gas, `` p \, \mathrm{d} V `` .
43+ For atmospheric flows it's convenient to express everything per unit mass. Assuming the mass of
44+ the fluid is conserved, we have that the work done per unit mass is `` p \, \mathrm{d}(\rho^{-1}) ``
45+ and the internal energy per unit mass is `` cᵛ \mathrm{d} T `` .
46+ Therefore, if `` \mathrm{d} \mathcal{Q} `` is the external heat change per unit mass,
47+ we have:
48+
49+ ``` math
50+ \mathrm{d} \mathcal{Q} = cᵛ \mathrm{d}T + p \, \mathrm{d}(ρ^{-1}) .
51+ ```
52+
53+ By utilising the identity ``\mathrm{d}(p / ρ) = p \, \mathrm{d}(ρ^{-1}) + ρ^{-1} \mathrm{d}p`` and using
54+ the ideal gas, we can rewrite the above conservation law as:
55+
56+ ```math
57+ \mathrm{d} \mathcal{Q} = (cᵛ + R) \mathrm{d}T - ρ^{-1} \mathrm{d}p ,
58+ ```
59+
60+ which is the expression in the main text after noting that the specific heat capacities under
61+ constant pressure and under constant volume are related via ``cᵖ ≡ cᵛ + R``.
62+
63+
4164where ``cᵖ`` is the specific heat capacity at constant pressure of the gas in question.
4265
4366For example, to represent dry air typical for Earth, with molar mass ``m = 0.029 \; \mathrm{kg} \, \mathrm{mol}^{-1}`` and heat capacity ``c^p = 1005 \; \mathrm{J} \, \mathrm{kg}^{-1} \, \mathrm{K}^{-1}``,
@@ -50,28 +73,34 @@ dry_air = IdealGas(molar_mass=0.029, heat_capacity=1005)
5073
5174### Adiabatic transformations and potential temperature
5275
53- Within adiabatic transformations, `` \mathrm{d} ê = 0 `` .
54- Combining the ideal gas law with conservation of energy then yields
76+ Within adiabatic transformations, `` \mathrm{d} \mathcal{Q} = 0 `` .
77+ Then, combining the ideal gas law with conservation of energy yields
5578
5679``` math
57- \frac{\mathrm{d} p}{\mathrm{d} T} = ρ cᵖ = \frac{p}{R T} cᵖ, \qquad \text{which implies} \qquad T ∼ \left ( \frac{ p}{p₀} \right )^{R / cᵖ} .
80+ \frac{\mathrm{d} T}{ T} = \frac{R}{cᵖ} \frac{\mathrm{d} p}{p} ,
5881```
5982
60- where `` p₀ `` is some reference pressure. As a result, the _ potential temperature_ , `` \theta ``
83+ which implies that `` T ∼ ( p / p₀ )^{R / cᵖ} `` ,
84+ where `` p₀ `` is some reference pressure value.
85+
86+ As a result, the _ potential temperature_ , `` θ `` , defined as
6187
6288``` math
63- θ ≡ T \left ( \frac{p₀ }{p} \right )^{Rᵈ / cᵖ} ≡ \frac{T}{Π}, \quad \text{where} \quad Π ≡ \left ( \frac{p}{p₀} \right )^{Rᵈ / cᵖ } ,
89+ θ ≡ T \big / \ left ( \frac{p}{p₀ } \right )^{Rᵈ / cᵖ} = \frac{T}{Π} ,
6490```
6591
66- is constant under adiabatic transformations, defined such that `` θ(z=0) = T(z=0) `` .
67- Above, we have also defined the Exner function, `` Π `` ,
92+ remains constant under adiabatic transformations.
93+ Notice that above, we also defined the Exner function, `` Π ≡ ( p / p₀ )^{Rᵈ / cᵖ} `` .
94+ By convention, we tend to use as reference values those at the surface `` z=0 `` , i.e., `` p₀ = p(z=0) `` , `` T₀ = T(z=0) `` , etc.
95+ This implies that the potential temperature under adiabatic transformation is `` θ(z) = θ₀ = T₀ `` .
6896
6997### Hydrostatic balance
7098
71- Next we consider a reference state with constant internal energy and thus constant potential temperature
99+ Next we consider a reference state that does not exchange energy with its environment
100+ (i.e., `` \mathrm{d} \mathcal{Q} = 0 `` ) and thus has constant potential temperature
72101
73102``` math
74- θ₀ = Tᵣ \left ( \frac{p₀}{pᵣ} \right )^{Rᵈ / cᵖ}
103+ θ₀ = Tᵣ \left ( \frac{p₀}{pᵣ} \right )^{Rᵈ / cᵖ} .
75104```
76105
77106!!! note "About subscripts"
@@ -85,32 +114,32 @@ Next we consider a reference state with constant internal energy and thus consta
85114Hydrostatic balance requires
86115
87116``` math
88- ∂_z pᵣ = - ρᵣ g
117+ ∂_z pᵣ = - ρᵣ g .
89118```
90119
91- we get
120+ By combining the hydrostatic balance with the ideal gas law and the definition of potential
121+ temperature we get
92122
93123``` math
94- \frac{pᵣ}{p₀} = \left (1 - \frac{g z}{cᵖ θ₀} \right )^{cᵖ / Rᵈ}
124+ \frac{pᵣ}{p₀} = \left (1 - \frac{g z}{cᵖ θ₀} \right )^{cᵖ / Rᵈ} .
95125```
96126
97127Thus
98128
99129``` math
100- Tᵣ(z) = θ₀ \left ( \frac{pᵣ}{p₀} \right )^{Rᵈ / cᵖ} = θ₀ \left ( 1 - \frac{g z}{cᵖ θ₀} \right )
130+ Tᵣ(z) = θ₀ \left ( \frac{pᵣ}{p₀} \right )^{Rᵈ / cᵖ} = θ₀ \left ( 1 - \frac{g z}{cᵖ θ₀} \right ) ,
101131```
102132
103133and
104134
105135``` math
106- ρᵣ(z) = \frac{p₀}{R θ₀} \left ( 1 - \frac{g z}{cᵖ θ₀} \right )^{cᵖ / Rᵈ - 1}
136+ ρᵣ(z) = \frac{p₀}{R θ₀} \left ( 1 - \frac{g z}{cᵖ θ₀} \right )^{cᵖ / Rᵈ - 1} .
107137```
108138
109139## An example of a dry reference state in Breeze
110140
111- We can visualise a hydrostatic reference profile
112- evaluating Breeze's reference-state utilities (which assume a dry reference state)
113- on a one-dimensional ` RectilinearGrid ` :
141+ We can visualise a hydrostatic reference profile evaluating Breeze's reference-state
142+ utilities (which assume a dry reference state) on a one-dimensional ` RectilinearGrid ` :
114143
115144``` @example reference_state
116145using Breeze
@@ -138,16 +167,16 @@ z = KernelFunctionOperation{Center, Center, Center}(znode, grid, Center(), Cente
138167Tᵣ₁ = Field(θ₀ * (pᵣ / p₀)^(Rᵈ / cᵖᵈ))
139168Tᵣ₂ = Field(θ₀ * (1 - g * z / (cᵖᵈ * θ₀)))
140169
141- fig = Figure(resolution = (900, 300) )
170+ fig = Figure()
142171
143172axT = Axis(fig[1, 1]; xlabel = "Temperature (ᵒK)", ylabel = "Height (m)")
144173lines!(axT, Tᵣ₁)
145- lines!(axT, Tᵣ₂, linestyle= :dash, color = :orange, linewidth= 2)
174+ lines!(axT, Tᵣ₂, linestyle = :dash, color = :orange, linewidth = 2)
146175
147- axp = Axis(fig[1, 2]; xlabel = "Pressure (10⁵ Pa)")
176+ axp = Axis(fig[1, 2]; xlabel = "Pressure (10⁵ Pa)", yticklabelsvisible = false )
148177lines!(axp, pᵣ / 1e5)
149178
150- axρ = Axis(fig[1, 3]; xlabel = "Density (kg m⁻³)")
179+ axρ = Axis(fig[1, 3]; xlabel = "Density (kg m⁻³)", yticklabelsvisible = false )
151180lines!(axρ, ρᵣ)
152181
153182fig
@@ -167,7 +196,7 @@ The partial pressure of the dry air and vapor components are related to the comp
167196`` ρᵈ `` and `` ρᵛ `` through the ideal gas law,
168197
169198``` math
170- pᵈ = ρᵈ Rᵈ T \qquad \text{and} \qquad pᵛ = ρᵛ Rᵛ T
199+ pᵈ = ρᵈ Rᵈ T \qquad \text{and} \qquad pᵛ = ρᵛ Rᵛ T ,
171200```
172201
173202where `` T `` is temperature, `` Rⁱ = ℛ / m^β `` is the specific gas constant for component `` β `` ,
@@ -188,7 +217,7 @@ and water vapor are ``mᵈ = 0.029`` kg/mol and ``mᵛ = 0.018`` kg/mol.
188217To write the effective gas law for moist air, we introduce the mass ratios
189218
190219``` math
191- qᵈ \equiv \frac{ρᵈ}{ρ} \qquad \text{and} \qquad qᵛ \equiv \frac{ρᵛ}{ρ}
220+ qᵈ ≡ \frac{ρᵈ}{ρ} \qquad \text{and} \qquad qᵛ ≡ \frac{ρᵛ}{ρ} ,
192221```
193222
194223where `` ρ `` is total density of the fluid including dry air, vapor, and condensates,
@@ -217,13 +246,13 @@ q = 0.01 # 1% water vapor by mass
217246cᵖᵐ = mixture_heat_capacity(qᵛ, thermo)
218247```
219248
220- ## The Clausius-Claperyon relation and saturation specific humidity
249+ ## The Clausius--Clapeyron relation and saturation specific humidity
221250
222- The [ Clausius-Claperyon relation] ( https://en.wikipedia.org/wiki/Clausius%E2%80%93Clapeyron_relation )
251+ The [ Clausius--Clapeyron relation] ( https://en.wikipedia.org/wiki/Clausius%E2%80%93Clapeyron_relation )
223252for an ideal gas
224253
225254``` math
226- \frac{\mathrm{d} pᵛ⁺}{\mathrm{d} T} = \frac{pᵛ⁺ ℒ^β(T)}{Rᵛ T^2}
255+ \frac{\mathrm{d} pᵛ⁺}{\mathrm{d} T} = \frac{pᵛ⁺ ℒ^β(T)}{Rᵛ T^2} ,
227256```
228257
229258where `` pᵛ⁺ `` is saturation vapor pressure, `` T `` is temperature, `` Rᵛ `` is the specific gas constant for vapor,
@@ -235,14 +264,14 @@ the latent heat of a phase transition is linear in temperature.
235264For example, for phase change from vapor to liquid,
236265
237266``` math
238- ℒˡ(T) = ℒˡ₀ + \big ( \underbrace{cᵖᵛ - cᵖˡ}_{≡Δcˡ} \big ) T
267+ ℒˡ(T) = ℒˡ₀ + \big ( \underbrace{cᵖᵛ - cᵖˡ}_{≡Δcˡ} \big ) T ,
239268```
240269
241270where `` ℒˡ₀ `` is the latent heat at `` T = 0 `` , with `` T `` in Kelvin.
242271Integrate that to get
243272
244273``` math
245- pᵛ⁺(T) = pᵗʳ \left ( \frac{T}{Tᵗʳ} \right )^{Δcˡ / Rᵛ} \exp \left \{ \frac{ℒˡ₀}{Rᵛ} \left (\frac{1}{Tᵗʳ} - \frac{1}{T} \right ) \right \}
274+ pᵛ⁺(T) = pᵗʳ \left ( \frac{T}{Tᵗʳ} \right )^{Δcˡ / Rᵛ} \exp \left [ \frac{ℒˡ₀}{Rᵛ} \left (\frac{1}{Tᵗʳ} - \frac{1}{T} \right ) \right ] .
246275```
247276
248277Consider parameters for liquid water,
@@ -261,7 +290,7 @@ water_ice = CondensedPhase(latent_heat=2834000, heat_capacity=2108)
261290The saturation specific humidity is
262291
263292``` math
264- qᵛ⁺ ≡ \frac{ρᵛ⁺}{ρ} = \frac{pᵛ⁺}{Rᵐ T}
293+ qᵛ⁺ ≡ \frac{ρᵛ⁺}{ρ} = \frac{pᵛ⁺}{Rᵐ T} .
265294```
266295
267296This is what it looks like:
0 commit comments