|
| 1 | +struct Microphysics1M{TH, SV, PAR} <: AbstractMicrophysics |
| 2 | + thermodynamics::TH |
| 3 | + sedimentation_velocities:: SV |
| 4 | + parameters:: PAR |
| 5 | +end |
| 6 | + |
| 7 | +function Microphysics1M(grid; thermodynamics, parameters) |
| 8 | + sedimentation_velocities = (; ρq_rai = ZFaceField(grid), ρq_sno = ZFaceField(grid)) |
| 9 | + Microphysics1M(thermodynamics, sedimentation_velocities, parameters) |
| 10 | +end |
| 11 | + |
| 12 | +required_microphysics_tracers(::Microphysics1M) = (:ρq_tot, :ρq_liq, :ρq_ice, :ρq_rai, :ρq_sno, :ρe_tot) |
| 13 | +required_microphysics_auxiliary_fields(::Microphysics1M) = (:rho, :PAR) |
| 14 | + |
| 15 | +@inline specific(ρ, values...) = (value/ρ for value in values) |
| 16 | + |
| 17 | +@inline function (mp::Microphysics1M)(::Val{:ρq_liq}, x, y, z, t, ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno, ρe_tot, PAR) |
| 18 | + dt = PAR.dt |
| 19 | + q_tot, q_liq, q_ice, q_rain, q_snow = specific(ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno) |
| 20 | + T = air_temperature(mp.thermodynamics, ρe_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno) |
| 21 | + |
| 22 | + cond_vapor_liquid = cloud_liquid_condensation_rate(mp, q_tot, q_liq, q_ice, q_rain, q_snow, ρ, T, dt) |
| 23 | + auto_liquid_rain = autoconversion_liquid_to_rain_rate(mp, q_liq, ρ, dt) |
| 24 | + acc_cloud_rain = accretion_cloud_rain_rate(mp, q_liq, q_rain, ρ, dt) |
| 25 | + acc_cloud_snow = accretion_cloud_snow_rate(mp, q_liq, q_snow, ρ, T, dt) |
| 26 | + |
| 27 | + return ρ * (cond_vapor_liquid.liq + auto_liquid_rain.liq + acc_cloud_rain.liq + acc_cloud_snow.liq) |
| 28 | +end |
| 29 | + |
| 30 | +@inline function (mp::Microphysics1M)(::Val{:ρq_ice}, x, y, z, t, ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno, ρe_tot, PAR) |
| 31 | + dt = PAR.dt |
| 32 | + q_tot, q_liq, q_ice, q_rain, q_snow = specific(ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno) |
| 33 | + T = air_temperature(mp.thermodynamics, ρe_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno) |
| 34 | + |
| 35 | + cond_vapor_ice = cloud_ice_condensation_rate(mp, q_tot, q_liq, q_ice, q_rain, q_snow, ρ, T, dt) |
| 36 | + auto_ice_snow = autoconversion_ice_to_snow_rate(mp, q_ice, dt) |
| 37 | + acc_ice_snow = accretion_ice_snow_rate(mp, q_ice, q_snow, ρ, dt) |
| 38 | + acc_ice_rain_snow = accretion_ice_rain_to_snow_rate(mp, q_ice, q_rain, ρ, dt) |
| 39 | + |
| 40 | + return ρ * (cond_vapor_ice.ice + auto_ice_snow.ice + acc_ice_snow.ice + acc_ice_rain_snow.ice) |
| 41 | +end |
| 42 | + |
| 43 | +@inline function (mp::Microphysics1M)(::Val{:ρq_rai}, x, y, z, t, ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno, ρe_tot, PAR) |
| 44 | + dt = PAR.dt |
| 45 | + q_tot, q_liq, q_ice, q_rain, q_snow = specific(ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno) |
| 46 | + T = air_temperature(mp.thermodynamics, ρe_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno) |
| 47 | + |
| 48 | + auto_liquid_rain = autoconversion_liquid_to_rain_rate(mp, q_liq, ρ, dt) |
| 49 | + acc_cloud_rain = accretion_cloud_rain_rate(mp, q_liq, q_rain, ρ, dt) |
| 50 | + acc_snow_rain = accretion_snow_rain_rate(mp, q_rain, q_snow, ρ, T, dt) |
| 51 | + acc_cloud_snow = accretion_cloud_snow_rate(mp, q_liq, q_snow, ρ, T, dt) |
| 52 | + sink_ice_rain = rain_sink_from_ice_rate(mp, q_ice, q_rain, ρ, dt) |
| 53 | + evaporation_rain = rain_evaporation_rate(mp, q_tot, q_liq, q_ice, q_rain, q_snow, ρ, T, dt) |
| 54 | + melt_snow_rain = snow_melt_rate(mp, q_snow, ρ, T, dt) |
| 55 | + |
| 56 | + return ρ * (auto_liquid_rain.rain + acc_cloud_rain.rain + acc_cloud_snow.rain + acc_ice_rain_snow.rain + acc_snow_rain.rain + sink_ice_rain.rain + evaporation_rain.rain + melt_snow_rain.rain) |
| 57 | +end |
| 58 | + |
| 59 | +@inline function (mp::Microphysics1M)(::Val{:ρq_sno}, x, y, z, t, ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno, ρe_tot, PAR) |
| 60 | + dt = PAR.dt |
| 61 | + q_tot, q_liq, q_ice, q_rain, q_snow = specific(ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno) |
| 62 | + T = air_temperature(mp.thermodynamics, ρe_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno) |
| 63 | + |
| 64 | + auto_ice_snow = autoconversion_ice_to_snow_rate(microphysics, q_ice, dt_ft) |
| 65 | + acc_ice_snow = accretion_ice_snow_rate(microphysics, q_ice, q_snow, ρi, dt_ft) |
| 66 | + acc_cloud = accretion_cloud_snow_rate(microphysics, q_liq, q_snow, ρi, Ti, dt_ft) |
| 67 | + acc_ice_rain_snow = accretion_ice_rain_to_snow_rate(microphysics, q_ice, q_rain, ρi, dt_ft) |
| 68 | + acc_snow_rain = accretion_snow_rain_rate(microphysics, q_rain, q_snow, ρi, Ti, dt_ft) |
| 69 | + melt_snow_rain = snow_melt_rate(microphysics, q_snow, ρi, Ti, dt_ft) |
| 70 | + deposition_vapor_snow = snow_deposition_rate(microphysics, q_tot, q_liq, q_ice, q_rain, q_snow, ρi, Ti, dt_ft) |
| 71 | + |
| 72 | + return ρ * (auto_ice_snow.snow + acc_ice_snow.snow + acc_cloud.snow + acc_ice_rain_snow.snow + acc_snow_rain.snow + melt_snow_rain.snow + deposition_vapor_snow.snow) |
| 73 | +end |
| 74 | + |
| 75 | +@inline function (mp::Microphysics1M)(::Val{:ρq_tot}, x, y, z, t, ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno, ρe_tot, PAR) |
| 76 | + dρ_liq = mp(:ρq_liq, x, y, z, t, ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno, ρe_tot, PAR) |
| 77 | + dρ_ice = mp(:ρq_ice, x, y, z, t, ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno, ρe_tot, PAR) |
| 78 | + dρ_rai = mp(:ρq_rai, x, y, z, t, ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno, ρe_tot, PAR) |
| 79 | + dρ_sno = mp(:ρq_sno, x, y, z, t, ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno, ρe_tot, PAR) |
| 80 | + return dq_liq + dq_ice + dq_rai + dq_sno |
| 81 | +end |
| 82 | + |
| 83 | +@inline function (mp::Microphysics1M)(::Val{:ρe_tot}, x, y, z, t, ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno, ρe_tot, PAR) |
| 84 | + dt = PAR.dt |
| 85 | + q_tot, q_liq, q_ice, q_rain, q_snow = specific(ρ, ρq_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno) |
| 86 | + T = air_temperature(mp.thermodynamics, ρe_tot, ρq_liq, ρq_ice, ρq_rai, ρq_sno) |
| 87 | + Lv = latent_heat_vapor(mp.thermodynamics, T) |
| 88 | + Ls = latent_heat_sublimation(mp.thermodynamics, T) |
| 89 | + Lf = latent_heat_fusion(mp.thermodynamics, T) |
| 90 | + |
| 91 | + cond_vapor_liquid = cloud_liquid_condensation_rate(mp, q_tot, q_liq, q_ice, q_rain, q_snow, ρ, T, dt) |
| 92 | + cond_vapor_ice = cloud_ice_condensation_rate(mp, q_tot, q_liq, q_ice, q_rain, q_snow, ρ, T, dt) |
| 93 | + acc_cloud_snow = accretion_cloud_snow_rate(mp, q_liq, q_snow, ρ, T, dt) |
| 94 | + rain_sink_ice = rain_sink_from_ice_rate(mp, q_ice, q_rain, ρ, T, dt) |
| 95 | + acc_snow_rain = accretion_snow_rain_rate(mp, q_rain, q_snow, ρ, T, dt) |
| 96 | + rain_evap = rain_evaporation_rate(mp, q_tot, q_liq, q_ice, q_rain, q_snow, ρ, T, dt) |
| 97 | + snow_melt = snow_melt_rate(mp, q_snow, ρ, T, dt) |
| 98 | + snow_dep = snow_deposition_rate(mp, q_tot, q_liq, q_ice, q_rain, q_snow, ρ, T, dt) |
| 99 | + |
| 100 | + l_vapor_liquid = Lv * cond_vapor_liquid.liq |
| 101 | + l_cond_ice = Ls * cond_vapor_ice.ice |
| 102 | + l_acc_cloud_snow = Lf * acc_cloud_snow.snow |
| 103 | + l_rain_sink_ice = Lf * rain_sink_ice.snow |
| 104 | + l_acc_snow_rain = Lf * acc_snow_rain.snow |
| 105 | + l_rain_evap = Lv * rain_evap.rain |
| 106 | + l_snow_melt = Lf * snow_melt.snow |
| 107 | + l_snow_dep = Ls * snow_dep.snow |
| 108 | + |
| 109 | + return ρ * (l_vapor_liquid + l_cond_ice + l_acc_cloud_snow + l_rain_sink_ice + l_acc_snow_rain + l_rain_evap + l_snow_melt + l_snow_dep) |
| 110 | +end |
| 111 | + |
| 112 | +@inline microphysics_sedimentation_velocity(mp::Microphysics1M, ::Val{:ρq_rai}) = |
| 113 | + (; u = ZeroField(), v = ZeroField(), w = mp.sedimentation_velocities.ρq_rai) |
| 114 | + |
| 115 | +@inline microphysics_sedimentation_velocity(mp::Microphysics1M, ::Val{:ρq_sno}) = |
| 116 | + (; u = ZeroField(), v = ZeroField(), w = mp.sedimentation_velocities.ρq_sno) |
| 117 | + |
| 118 | +function update_microphysics_state!(mp::Microphysics1M, model, kernel_parameters; active_cells_map = nothing) |
| 119 | + w_velocities = mp.sedimentation_velocities |
| 120 | + arch = architecture(model.grid) |
| 121 | + grid = model.grid |
| 122 | + density = model.density |
| 123 | + parameters = mp.parameters |
| 124 | + |
| 125 | + exclude_periphery = true |
| 126 | + for tracer_name in sedimenting_tracers(mp) |
| 127 | + tracer_field = model.tracers[tracer_name] |
| 128 | + #tracer_w_velocity_bc = mp.sedimentation_velocities[tracer_name].boundary_conditions.immersed |
| 129 | + w_kernel_args = tuple(Val(tracer_name), density, tracer_field, parameters) |
| 130 | + #w_kernel_args = tuple(Val(tracer_name), density, tracer_field, parameters, tracer_w_velocity_bc) |
| 131 | + launch!(arch, grid, kernel_parameters, compute_sedimentation_velocity!, |
| 132 | + w_velocities[tracer_name], grid, w_kernel_args; |
| 133 | + active_cells_map, exclude_periphery) |
| 134 | + fill_halo_regions!(w_velocities[tracer_name]) |
| 135 | + end |
| 136 | + |
| 137 | + return nothing |
| 138 | +end |
| 139 | + |
| 140 | +@kernel function compute_sedimentation_velocity!(w_sed, grid, args) |
| 141 | + i, j, k = @index(Global, NTuple) |
| 142 | + @inbounds w_sed[i, j, k] = w_sedimentation_velocity(i, j, k, grid, args...) |
| 143 | +end |
| 144 | + |
| 145 | +@inline function w_sedimentation_velocity(i, j, k, grid, microphysics::Microphysics1M, ::Val{:ρq_rai}, ρ, ρq_rai) |
| 146 | + ρᶜᶜᶠ = ℑzᵃᵃᶠ(i, j, k, grid, ρ) |
| 147 | + ρq_raiᶜᶜᶠ = ℑzᵃᵃᶠ(i, j, k, grid, ρq_rai) |
| 148 | + return CM1.terminal_velocity(microphysics.parameters.pr, microphysics.parameters.tv.rain, ρᶜᶜᶠ, ρq_raiᶜᶜᶠ/ ρᶜᶜᶠ) |
| 149 | +end |
| 150 | + |
| 151 | +@inline function w_sedimentation_velocity(i, j, k, grid, microphysics::Microphysics1M, ::Val{:ρq_sno}, ρ, ρq_sno) |
| 152 | + ρᶜᶜᶠ = ℑzᵃᵃᶠ(i, j, k, grid, ρ) |
| 153 | + ρq_snoᶜᶜᶠ = ℑzᵃᵃᶠ(i, j, k, grid, ρq_sno) |
| 154 | + return CM1.terminal_velocity(microphysics.parameters.ps, microphysics.parameters.tv.snow, ρᶜᶜᶠ, ρq_snoᶜᶜᶠ/ ρᶜᶜᶠ) |
| 155 | +end |
0 commit comments