Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
100 changes: 100 additions & 0 deletions examples/brusselator.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
# ## Definition of the Brusselator Equation

# The Brusselator PDE is defined as follows:

# ```math
# \begin{align}
# 0 &= 1 + u^2v - 4.4u + \alpha(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}) + f(x, y, t)\\
# 0 &= 3.4u - u^2v + \alpha(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})
# \end{align}
# ```

# where

# ```math
# f(x, y, t) = \begin{cases}
# 5 & \quad \text{if } (x-0.3)^2+(y-0.6)^2 ≤ 0.1^2 \text{ and } t ≥ 1.1 \\
# 0 & \quad \text{else}
# \end{cases}
# ```

# and the initial conditions are

# ```math
# \begin{align}
# u(x, y, 0) &= 22\cdot (y(1-y))^{3/2} \\
# v(x, y, 0) &= 27\cdot (x(1-x))^{3/2}
# \end{align}
# ```

# with the periodic boundary condition

# ```math
# \begin{align}
# u(x+1,y,t) &= u(x,y,t) \\
# u(x,y+1,t) &= u(x,y,t)
# \end{align}
# ```

# To solve this PDE, we will discretize it into a system of ODEs with the finite difference
# method. We discretize `u` and `v` into arrays of the values at each time point:
# `u[i,j] = u(i*dx,j*dy)` for some choice of `dx`/`dy`, and same for `v`. Then our ODE is
# defined with `U[i,j,k] = [u v]`. The second derivative operator, the Laplacian, discretizes
# to become a tridiagonal matrix with `[1 -2 1]` and a `1` in the top right and bottom left
# corners. The nonlinear functions are then applied at each point in space (they are
# broadcast). Use `dx=dy=1/32`.

# The resulting `NonlinearProblem` definition is:

using NewtonKrylov, LinearAlgebra

const N = 32
const xyd_brusselator = range(0, stop = 1, length = N)

brusselator_f(x, y) = (((x - 0.3)^2 + (y - 0.6)^2) <= 0.1^2) * 5.0
limit(a, N) = a == N + 1 ? 1 : a == 0 ? N : a

function brusselator_2d(du, u, p)
A, B, alpha, dx = p
alpha = alpha / dx^2
return @inbounds for I in CartesianIndices((N, N))
i, j = Tuple(I)
x, y = xyd_brusselator[I[1]], xyd_brusselator[I[2]]
ip1, im1, jp1, jm1 = limit(i + 1, N), limit(i - 1, N), limit(j + 1, N),
limit(j - 1, N)
du[i, j, 1] = alpha * (
u[im1, j, 1] + u[ip1, j, 1] + u[i, jp1, 1] + u[i, jm1, 1] -
4u[i, j, 1]
) +
B +
u[i, j, 1]^2 * u[i, j, 2] - (A + 1) * u[i, j, 1] + brusselator_f(x, y)
du[i, j, 2] = alpha * (
u[im1, j, 2] + u[ip1, j, 2] + u[i, jp1, 2] + u[i, jm1, 2] -
4u[i, j, 2]
) + A * u[i, j, 1] - u[i, j, 1]^2 * u[i, j, 2]
end
end

function init_brusselator_2d(xyd)
N = length(xyd)
u = zeros(N, N, 2)
for I in CartesianIndices((N, N))
x = xyd[I[1]]
y = xyd[I[2]]
u[I, 1] = 22 * (y * (1 - y))^(3 / 2)
u[I, 2] = 27 * (x * (1 - x))^(3 / 2)
end
return u
end

const p = (3.4, 1.0, 10.0, step(xyd_brusselator))
u0 = init_brusselator_2d(xyd_brusselator)

J = collect(
NewtonKrylov.JacobianOperator(
(du, u) -> brusselator_2d(du, u, p), similar(u0), u0
)
)

# Corruption of in malloc...
newton_krylov!((du, u) -> brusselator_2d(du, u, p), u0)
Loading