Skip to content

autotune: integrate Optuna hyperparameter optimization + pruning #95

@ayushkrtiwari

Description

@ayushkrtiwari

Goal

Automate hyperparameter search with pruning and distributed study support.

Tasks

  • Add tuning/optuna_runner.py which:
    • accepts a configuration (search space, objective)
    • returns best params and trial history
  • Integrate pruning callbacks for early stop of bad trials.
  • Add optional RDB storage config for distributed tuning runs.
  • Provide example YAML and CLI to run tuning.

Motivation

Automates efficient hyperparameter search and prevents exhaustive grid scanning.

Metadata

Metadata

Labels

Semver:minorminor version changesType:Hardsenior developers, max points

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions