Skip to content

Commit 2ec9978

Browse files
committed
improve formatting
1 parent f0b7202 commit 2ec9978

File tree

1 file changed

+35
-11
lines changed

1 file changed

+35
-11
lines changed

content/tutorials/windfetch/windfetch.qmd

Lines changed: 35 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -193,7 +193,13 @@ USGS 1 arc-second n36w077 1 x 1 degree
193193
We remove the flag and rerun r.in.usgs to actually download and import the data. We filter the data to only include the tiles with "degree" in the title name.
194194

195195
```{python}
196-
tools.r_in_usgs(product="ned", output_name="ned", ned_dataset="ned1sec", title_filter="degree", nprocs=2)
196+
tools.r_in_usgs(
197+
product="ned",
198+
output_name="ned",
199+
ned_dataset="ned1sec",
200+
title_filter="degree",
201+
nprocs=2,
202+
)
197203
```
198204

199205
Let's look at the data we just downloaded. We will display only elevation values larger than 0:
@@ -318,18 +324,16 @@ point_fetch = tools.r_windfetch(
318324
step=1,
319325
minor_directions=9,
320326
minor_step=3,
321-
flags="c"
327+
flags="c",
322328
)[0]
323-
324329
```
325330

326331
We convert the r.windfetch output into a Pandas DataFrame for easier inspection. Each row corresponds to a direction and its computed fetch length (in meters).
327332

328333
```{python}
329-
fetch_df = pd.DataFrame({
330-
"directions": point_fetch["directions"],
331-
"fetch": point_fetch["fetch"]
332-
})
334+
fetch_df = pd.DataFrame(
335+
{"directions": point_fetch["directions"], "fetch": point_fetch["fetch"]}
336+
)
333337
fetch_df
334338
```
335339

@@ -432,7 +436,15 @@ with gs.RegionManager(vector="tract", align="land"):
432436
Next, we compute the wind fetch for each point in the vector map using the SPM setting.
433437

434438
```{python}
435-
points_fetch = tools.r_windfetch(input="land", points="points", format="json", step=1, minor_directions=9, minor_step=3, flags="c")
439+
points_fetch = tools.r_windfetch(
440+
input="land",
441+
points="points",
442+
format="json",
443+
step=1,
444+
minor_directions=9,
445+
minor_step=3,
446+
flags="c",
447+
)
436448
```
437449

438450
Similarly to the previous example, we will load fetch data into a Pandas DataFrame.
@@ -467,8 +479,16 @@ Then we will export the vector map to GeoJSON, ensuring the CRS is set to EPSG:4
467479

468480
```{python}
469481
merged_df.to_csv("results.txt", index=False)
470-
tools.v_in_ascii(input="results.txt", output="results", separator="comma", columns="x double, y double, fetch double", skip=1)
471-
tools.v_out_ogr(input="results", output="results.json", format="GeoJSON", lco="RFC7946=YES")
482+
tools.v_in_ascii(
483+
input="results.txt",
484+
output="results",
485+
separator="comma",
486+
columns="x double, y double, fetch double",
487+
skip=1,
488+
)
489+
tools.v_out_ogr(
490+
input="results", output="results.json", format="GeoJSON", lco="RFC7946=YES"
491+
)
472492
```
473493

474494

@@ -488,7 +508,11 @@ colormap = cm.linear.YlGnBu_07.scale(values.min(), values.max())
488508
colormap.caption = "Weighted Fetch"
489509
490510
# Center map at the mean location
491-
m = folium.Map(location=[gdf.geometry.y.mean(), gdf.geometry.x.mean()], zoom_start=12, tiles='CartoDB positron')
511+
m = folium.Map(
512+
location=[gdf.geometry.y.mean(), gdf.geometry.x.mean()],
513+
zoom_start=12,
514+
tiles="CartoDB positron",
515+
)
492516
493517
# Add points
494518
for _, row in gdf.iterrows():

0 commit comments

Comments
 (0)