Skip to content

Commit eacc525

Browse files
committed
Formatting tweaks for consistency with movement tutorial
- Ran through linter - Removed bold italics from links to GRASS commands - Added copyright and funding statements to YAML and removed copyright statement at end of file - Added links to other GRASS sample data sets
1 parent 24a7fa8 commit eacc525

File tree

1 file changed

+15
-16
lines changed

1 file changed

+15
-16
lines changed

content/tutorials/remote_sensing_visualization/GRASS_remotesensing.qmd

Lines changed: 15 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -13,11 +13,12 @@ format:
1313
page-layout: article
1414
categories: [intermediate, advanced, GUI, imagery, remote sensing]
1515
description: Analysis and visualization of multi-band satellite imagery using image fusion, environmental indexes, and dimensionality reduction with principle components analysis.
16-
engine: jupyter
1716
execute:
1817
eval: false
19-
Jupyter: python3
20-
editor: visual
18+
copyright:
19+
holder: Michael Barton
20+
year: 2025
21+
funding: "Creation of this tutorial was supported in part by US National Science Foundation grant FAIN 2303651."
2122

2223
# © Michael Barton 2025
2324
---
@@ -38,7 +39,7 @@ editor: visual
3839
:::::
3940

4041
::: {.callout-note title="Dataset"}
41-
This tutorial uses one of the standard GRASS demo data for Flagstaff, Arizona, USA: ***flagstaff_arizona_usa***. We will refer to maps in that data set, but it can be completed with any of the standard demo data sets for any region.
42+
This tutorial uses one of the standard GRASS sample data sets for Flagstaff, Arizona, USA: ***flagstaff_arizona_usa***. We will refer to place names in that data set, but it can be completed with any of the [standard sample data sets](https://grass.osgeo.org/download/data/) for any region--for example, the [North Carolina data set](https://grass.osgeo.org/sampledata/north_carolina/nc_spm_08_grass7.zip).
4243

4344
We will use a set of images from the **LandSat 8 satellite** and the *elevation* DEM raster map. However, this tutorial can also be used with other multi-band imagery, such as Sentinel or Terra/ASTER. With other satellite imagery than LandSat 8, the band numbers may differ from those described in this tutorial.
4445
:::
@@ -149,15 +150,15 @@ In this tutorial, we will use LandSat 8 bands 2-7
149150

150151
- The range of grey shades can be remapped across the cell values, so that they fully span a black to white continuum.
151152

152-
- This can be done in [*r.colors*](https://grass.osgeo.org/grass-stable/manuals/r.colors.html) by “equalizing” the color histogram of the cells.
153+
- This can be done in [r.colors](https://grass.osgeo.org/grass-stable/manuals/r.colors.html) by “equalizing” the color histogram of the cells.
153154
:::
154155

155156
::: g-col-6
156157
![Distribution of pixel values after histogram equalization](img_remotesensing/landsat_b5eq_histogram.webp)
157158
:::
158159
:::::
159160

160-
## Histogram equalization with [*r.colors*](https://grass.osgeo.org/grass-stable/manuals/r.colors.html) in GRASS
161+
## Histogram equalization with [r.colors](https://grass.osgeo.org/grass-stable/manuals/r.colors.html) in GRASS
161162

162163
- Using *r.colors* for histogram equalization will enhance the visibility of the image but will not change its cell values
163164

@@ -336,7 +337,7 @@ $$
336337
NDVI = \frac{NIR - red}{NIR + red}
337338
$$
338339

339-
- While you could create a map of NDVI using the *map calculator*, it can also be generated automatically from the GRASS [*i.vi*](https://grass.osgeo.org/grass-stable/manuals/i.vi.html) module, along with many other vegetation indexes.
340+
- While you could create a map of NDVI using the *map calculator*, it can also be generated automatically from the GRASS [i.vi](https://grass.osgeo.org/grass-stable/manuals/i.vi.html) module, along with many other vegetation indexes.
340341

341342
::: {.callout-note title="Tip"}
342343
When generating any new map, like NDVI, remember to first make sure that the **region** is set to match the LandSat images
@@ -361,7 +362,7 @@ When generating any new map, like NDVI, remember to first make sure that the **r
361362

362363
### Compute NDVI raster
363364

364-
1. Select the [*i.vi*](https://grass.osgeo.org/grass-stable/manuals/i.vi.html) tool from **Imagery/Satellite image products/vegetation indices** menu.
365+
1. Select the [i.vi](https://grass.osgeo.org/grass-stable/manuals/i.vi.html) tool from **Imagery/Satellite image products/vegetation indices** menu.
365366

366367
2. Choose **NDVI** for the index to calculate
367368

@@ -389,7 +390,7 @@ When generating any new map, like NDVI, remember to first make sure that the **r
389390

390391
1. Set the region to match the LandSat images
391392

392-
2. Use the [*i.vi*](https://grass.osgeo.org/grass-stable/manuals/i.vi.html) tool to create a map of NDVI values.
393+
2. Use the [i.vi](https://grass.osgeo.org/grass-stable/manuals/i.vi.html) tool to create a map of NDVI values.
393394

394395
```{python}
395396
g.region raster=landsat8_2024_B2
@@ -401,7 +402,7 @@ i.vi output=Flagstaff_NDVI viname=ndvi red=landsat8_2024_B4 nir=landsat8_2024_B5
401402

402403
1. Set the region to match the LandSat images
403404

404-
2. Use the [*i.vi*](https://grass.osgeo.org/grass-stable/manuals/i.vi.html) tool to create a map of NDVI values.
405+
2. Use the [i.vi](https://grass.osgeo.org/grass-stable/manuals/i.vi.html) tool to create a map of NDVI values.
405406

406407
```{python}
407408
gs.run_command("g.region", raster="landsat8_2024_B2")
@@ -596,7 +597,7 @@ Statistical details of PCA output appear in the console or terminal.
596597

597598
## Generating a topographic relief map
598599

599-
A relief map can be made from the *elevation* DEM using the [*r.relief*](https://grass.osgeo.org/grass-stable/manuals/r.relief.html) tool from the **Raster/Terrain analysis/Compute shaded relief** menu
600+
A relief map can be made from the *elevation* DEM using the [r.relief](https://grass.osgeo.org/grass-stable/manuals/r.relief.html) tool from the **Raster/Terrain analysis/Compute shaded relief** menu
600601

601602
:::::: {.panel-tabset group="language"}
602603

@@ -644,7 +645,7 @@ gs.run_command("r.relief",
644645

645646
### Generating an RGB color map from image fusion
646647

647-
Use the [*r.composite*](https://grass.osgeo.org/grass-stable/manuals/r.composite.html) tool from the **Raster/Manage colors/Create RGB** menu to create a new RGB map from the fusion of 3 PCA component maps
648+
Use the [r.composite](https://grass.osgeo.org/grass-stable/manuals/r.composite.html) tool from the **Raster/Manage colors/Create RGB** menu to create a new RGB map from the fusion of 3 PCA component maps
648649

649650
:::::: {.panel-tabset group="language"}
650651

@@ -689,7 +690,7 @@ gs.run_command("r.composite",
689690

690691
## Combining relief and a color image fusion map
691692

692-
A topographic relief map and an RGB image fusion map can be combined with the [*d.shade tool*](https://grass.osgeo.org/grass-stable/manuals/d.shade.html) in the layer manager or by using the [*r.shade*](https://grass.osgeo.org/grass-stable/manuals/r.shade.html) tool from the **/Raster/Terrain analysis/Apply shade to raster** menu.
693+
A topographic relief map and an RGB image fusion map can be combined with the [d.shade tool](https://grass.osgeo.org/grass-stable/manuals/d.shade.html) in the layer manager or by using the [r.shade](https://grass.osgeo.org/grass-stable/manuals/r.shade.html) tool from the **/Raster/Terrain analysis/Apply shade to raster** menu.
693694

694695
:::::: {.panel-tabset group="language"}
695696

@@ -786,6 +787,4 @@ GRASS has many more features and tools for working with remote sensing data.
786787

787788
- For **3D geophysics** (e.g., electrical tomography or ground penetrating radar), GRASS offers a unique suite of true **3D voxel analysis tools with n-dimensional visualization in NVIZ**.
788789

789-
These and other tools make GRASS a rich and powerful geoprocessing environment for many remote sensing applications.
790-
791-
#### *© Michael Barton 2025*
790+
These and other tools make GRASS a rich and powerful geoprocessing environment for many remote sensing applications.

0 commit comments

Comments
 (0)