Skip to content

Commit dcfc780

Browse files
committed
updated functions documentation
1 parent 1bf69ae commit dcfc780

File tree

1 file changed

+40
-34
lines changed

1 file changed

+40
-34
lines changed

OceanLab/utils.py

Lines changed: 40 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -12,14 +12,15 @@
1212
def parallel_client(cpu_params=dict(tpw=2,nw=4,ml=7.5)):
1313
"""
1414
Create client kernel for parallel computing
15-
15+
====================================================
1616
INPUT:
1717
-> cpu_params: dict containing floats with keys
1818
-> tpw: threads_per_worker
1919
-> nw: n_workers
2020
-> ml: memory_limit per worker [GB]
2121
OUTPUT:
2222
-> client: configuration of parallel computing
23+
====================================================
2324
"""
2425

2526
client = Client(threads_per_worker=cpu_params['tpw'],
@@ -33,19 +34,21 @@ def parallel_client(cpu_params=dict(tpw=2,nw=4,ml=7.5)):
3334
#=============================================================================
3435
def argdistnear(x,y,xi,yi):
3536
'''
36-
This function finds the index to nearest points in (xi,yi) from (x,y).
37-
38-
usage:
37+
This function finds the index to nearest points in (xi,yi) from (x,y)
38+
======================================================================
39+
40+
USAGE:
3941
x,y = [5,1,10],[2,6,3]
4042
xi,yi = np.linspace(0,19,20),np.linspace(-5,30,20)
4143
ind = argdistnear(x,y,xi,yi)
4244
4345
INPUT:
44-
--> (x,y): points [list]
45-
--> (xi,yi): series to search nearest point [list]
46-
47-
Iury T.Simões-Sousa
48-
(IO-USP/ UMass-Dartmouth)
46+
(x,y) = points [list]
47+
(xi,yi) = series to search nearest point [list]
48+
49+
OUTPUT:
50+
ind = index of the nearest points
51+
======================================================================
4952
'''
5053

5154
idxs = [np.argmin(np.sqrt((xi-xx)**2 + (yi-yy)**2)) for xx,yy in zip(x,y)]
@@ -59,36 +62,39 @@ def argdistnear(x,y,xi,yi):
5962
def meaneddy(prop,days=60,ndim=1,DataArray=False,timedim=None):
6063

6164
"""
62-
Apply a low-pass filter (scipy.signal.butter) to 'prop' and obtain the mean and eddy components.
63-
64-
usage [1]:
65-
Velocity = np.random.randn(365,17,13) # one year, 17 lat x 13 lon domain
66-
Filtered, Residual = meaneddy(Velocity, days=10, ndim=3, DataArray=False,timedim=None)
65+
Apply a low-pass filter (scipy.signal.butter) to 'prop' and obtain the
66+
mean and eddy components.
67+
==========================================================================
68+
69+
USAGE [1]:
70+
# np.array() one year, 17 lat x 13 lon domain
71+
Velocity = np.random.randn(365,17,13)
72+
Filtered, Residual = meaneddy(Velocity, days=10, ndim=3,
73+
DataArray=False,timedim=None)
6774
68-
usage [2]:
69-
Velocity = xr.DataArray(data=np.random.randn(365,17,13), dims=["time","lat","lon"],
70-
coords=dict(time=(["time"],range(0,365)), lat=(["lat"],np.arange(-4,4.5,0.5)), lon=(["lon"],np.arange(1,7.5,0.5)))) # one year, 17 lat x 13 lon domain
71-
Filtered, Residual = meaneddy(Velocity, days=10, DataArray=True,timedim=["time"])
72-
75+
USAGE [2]:
76+
# xr.DataArray() one year, 17 lat x 13 lon domain
77+
Velocity = xr.DataArray(data=np.random.randn(365,17,13),
78+
dims=["time","lat","lon"],
79+
coords=dict(time=(["time"],range(0,365)),
80+
lat=(["lat"],np.arange(-4,4.5,0.5)),
81+
lon=(["lon"],np.arange(1,7.5,0.5))))
82+
Filtered, Residual = meaneddy(Velocity, days=10,
83+
DataArray=True,timedim=["time"])
7384
7485
INPUT:
75-
-> prop: 1, 2 or 3D array to filter
76-
-> days: number of days to set up the filter
77-
-> ndim: number of dimensions of the data [only used for DataArray=False, max:3]
78-
-> DataArray: True if prop is in xr.DataArray format
79-
-> dim: name of time dimension to filter (only used for DataArray=True)
86+
prop = 1, 2 or 3D array to be filtered
87+
days = number of days to set up the filter
88+
ndim = number of dimensions of the data
89+
[only used for DataArray=False, max:3]
90+
DataArray = True if prop is in xr.DataArray format
91+
dim = name of time dimension to filter
92+
[only used for DataArray=True]
8093
8194
OUTPUT:
82-
-> m_prop: mean (filtered) part of the property
83-
-> p_prop: prime part of the property, essentially prop - m_prop
84-
85-
v1 (February 2018)
86-
Cesar B. Rocha
87-
Dante C. Napolitano ([email protected])
88-
89-
v2 (December 2020)
90-
Dante C. Napolitano ([email protected])
91-
Mariana M. Lage ([email protected])
95+
m_prop = mean (filtered) part of the property
96+
p_prop = prime part of the property, essentially prop - m_prop
97+
==========================================================================
9298
"""
9399

94100
# creating filter

0 commit comments

Comments
 (0)