|
| 1 | +--- |
| 2 | +title: PDF VQA Extraction Pipeline |
| 3 | +createTime: 2025/11/17 14:01:55 |
| 4 | +permalink: /en/guide/vqa_extract_optimized/ |
| 5 | +icon: heroicons:document-text |
| 6 | +--- |
| 7 | + |
| 8 | +# PDF VQA Extraction Pipeline |
| 9 | + |
| 10 | +## 1. Overview |
| 11 | + |
| 12 | +The **PDF VQA Extraction Pipeline** automatically extracts high-quality Q&A pairs from textbook-style PDFs. It supports both separated question/answer PDFs and interleaved PDFs, and chains together layout parsing (MinerU), subject-aware LLM extraction, and structured post-processing. Typical use cases: |
| 13 | + |
| 14 | +- Building math/physics/chemistry QA corpora from scanned books |
| 15 | +- Creating QA pairs' markdown/JSONL exports that preserve figure references |
| 16 | + |
| 17 | +Major stages: |
| 18 | + |
| 19 | +1. **Document layout extraction**: call MinerU to dump structured JSON + rendered page images. |
| 20 | +2. **LLM-based QA extraction**: prompt the `VQAExtractor` operator with subject-specific rules. |
| 21 | +3. **Merging & filtering**: consolidate question/answer streams, filter invalid entries, emit JSONL/Markdown plus copied images. |
| 22 | + |
| 23 | +## 2. Quick Start |
| 24 | + |
| 25 | +### Step 1: Install Dataflow (and MinerU) |
| 26 | +```shell |
| 27 | +pip install open-dataflow |
| 28 | +pip install mineru[pipeline] |
| 29 | +mineru-models-download |
| 30 | +``` |
| 31 | +The `vlm-vllm-engine` backend requires GPU support. |
| 32 | + |
| 33 | +### Step 2: Create a workspace |
| 34 | +```shell |
| 35 | +mkdir run_dataflow |
| 36 | +cd run_dataflow |
| 37 | +``` |
| 38 | + |
| 39 | +### Step 3: Initialize Dataflow |
| 40 | +```shell |
| 41 | +dataflow init |
| 42 | +``` |
| 43 | +You can then add your pipeline script under `pipelines/` or any custom path. |
| 44 | + |
| 45 | +### Step 4: Configure API credentials |
| 46 | +Linux / macOS: |
| 47 | +```shell |
| 48 | +export DF_API_KEY="sk-xxxxx" |
| 49 | +``` |
| 50 | +Windows PowerShell: |
| 51 | +```powershell |
| 52 | +$env:DF_API_KEY = "sk-xxxxx" |
| 53 | +``` |
| 54 | +In the pipeline script, set your API endpoint: |
| 55 | +```python |
| 56 | +self.llm_serving = APILLMServing_request( |
| 57 | + api_url="https://api.openai.com/v1/chat/completions", |
| 58 | + model_name="gemini-2.5-pro", |
| 59 | + max_workers=100, |
| 60 | +) |
| 61 | +``` |
| 62 | + |
| 63 | +### Step 5: One-click run |
| 64 | +```bash |
| 65 | +python pipelines/vqa_extract_optimized_pipeline.py |
| 66 | +``` |
| 67 | +You can also import the operators into other workflows; the remainder of this doc explains the data flow in detail. |
| 68 | + |
| 69 | +## 3. Data Flow and Pipeline Logic |
| 70 | + |
| 71 | +### 1. Input data |
| 72 | + |
| 73 | +Each job is defined by a JSONL row. Two modes are supported: |
| 74 | + |
| 75 | +- **Separate PDFs** |
| 76 | + ```jsonl |
| 77 | + {"question_pdf_path": "/abs/path/questions.pdf", "answer_pdf_path": "/abs/path/answers.pdf", "subject": "math", "output_dir": "./output/math"} |
| 78 | + ``` |
| 79 | +- **Interleaved PDFs** |
| 80 | + ```jsonl |
| 81 | + {"pdf_path": "/abs/path/qa_mixed.pdf", "subject": "physics", "output_dir": "./output/physics"} |
| 82 | + ``` |
| 83 | + |
| 84 | +`FileStorage` handles batching/cache management: |
| 85 | +```python |
| 86 | +self.storage = FileStorage( |
| 87 | + first_entry_file_name="./examples/VQA/vqa_extract_interleaved_test.jsonl", |
| 88 | + cache_path="./vqa_extract_optimized_cache", |
| 89 | + file_name_prefix="vqa", |
| 90 | + cache_type="jsonl", |
| 91 | +) |
| 92 | +``` |
| 93 | + |
| 94 | +### 2. Document layout extraction (MinerU) |
| 95 | + |
| 96 | +For each PDF (question, answer, or mixed), the pipeline calls `_extract_doc_layout` inside `VQAExtractor`. MinerU outputs: |
| 97 | + |
| 98 | +- `<book>/<backend>/<book>_content_list.json`: structured layout tokens (texts, figures, tables, IDs) |
| 99 | +- `<book>/<backend>/images/`: cropped page images |
| 100 | + |
| 101 | +The backend can be: |
| 102 | + |
| 103 | +- `vlm-transformers`: CPU/GPU compatible |
| 104 | +- `vlm-vllm-engine`: high-throughput GPU mode (requires CUDA) |
| 105 | + |
| 106 | +### 3. QA extraction (VQAExtractor) |
| 107 | + |
| 108 | +`VQAExtractor` chunks the layout JSON to respect token limits, builds subject-aware prompts (`QAExtractPrompt`), and batches LLM calls via `APILLMServing_request`. Key behaviors: |
| 109 | + |
| 110 | +- Supports `question_pdf_path` + `answer_pdf_path`, or a single `pdf_path` (auto-detect interleaved mode). |
| 111 | +- Copies rendered images into `output_dir/question_images` and/or `answer_images`. |
| 112 | +- Parses `<qa_pair>`, `<question>`, `<answer>`, `<solution>`, `<chapter>` tags from the LLM response, with figure references preserved as `<pic>tag:box</pic>`. |
| 113 | + |
| 114 | +### 4. Post-processing and outputs |
| 115 | + |
| 116 | +For each `output_dir`, the pipeline writes: |
| 117 | + |
| 118 | +1. `vqa_extracted_questions.jsonl` |
| 119 | +2. `vqa_extracted_answers.jsonl` (if separate mode) |
| 120 | +3. `vqa_merged_qa_pairs.jsonl` |
| 121 | +4. `vqa_filtered_qa_pairs.jsonl` |
| 122 | +5. `vqa_filtered_qa_pairs.md` |
| 123 | +6. `question_images/`, `answer_images/` (depending on mode) |
| 124 | + |
| 125 | +Filtering keeps entries where the question exists and either `answer` or `solution` is non-empty. Markdown conversion (`jsonl_to_md`) provides a human-readable summary. |
| 126 | + |
| 127 | +## 4. Output Data |
| 128 | + |
| 129 | +Each filtered record includes: |
| 130 | + |
| 131 | +- `question`: question text (with inline `<pic>` tags if figures are referenced) |
| 132 | +- `answer`: answer text (if extracted from answer PDF) |
| 133 | +- `solution`: optional worked solution (if present) |
| 134 | +- `label`: original numbering (e.g., “Example 3”, “习题2”) |
| 135 | +- `chapter_title`: chapter/section header detected on the same page |
| 136 | + |
| 137 | +Example: |
| 138 | +```json |
| 139 | +{ |
| 140 | + "question": "Solve for x in x^2 - 1 = 0.", |
| 141 | + "answer": "x = 1 or x = -1", |
| 142 | + "solution": "Factor as (x-1)(x+1)=0.", |
| 143 | + "label": "Example 1", |
| 144 | + "chapter_title": "Chapter 1 Quadratic Equations" |
| 145 | +} |
| 146 | +``` |
| 147 | + |
| 148 | +## 5. Pipeline Example |
| 149 | + |
| 150 | +```python |
| 151 | +import os |
| 152 | +import sys |
| 153 | + |
| 154 | +parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) |
| 155 | +if parent_dir not in sys.path: |
| 156 | + sys.path.insert(0, parent_dir) |
| 157 | + |
| 158 | +from dataflow.serving import APILLMServing_request |
| 159 | +from dataflow.utils.storage import FileStorage |
| 160 | +from operators.vqa_extractor import VQAExtractor |
| 161 | + |
| 162 | +class VQA_extract_optimized_pipeline: |
| 163 | + def __init__(self): |
| 164 | + self.storage = FileStorage( |
| 165 | + first_entry_file_name="./examples/VQA/vqa_extract_interleaved_test.jsonl", |
| 166 | + cache_path="./vqa_extract_optimized_cache", |
| 167 | + file_name_prefix="vqa", |
| 168 | + cache_type="jsonl", |
| 169 | + ) |
| 170 | + |
| 171 | + self.llm_serving = APILLMServing_request( |
| 172 | + api_url="https://api.openai.com/v1/chat/completions", |
| 173 | + key_name_of_api_key="DF_API_KEY", |
| 174 | + model_name="gpt-4o", |
| 175 | + max_workers=100, |
| 176 | + ) |
| 177 | + |
| 178 | + self.vqa_extractor = VQAExtractor( |
| 179 | + llm_serving=self.llm_serving |
| 180 | + ) |
| 181 | + |
| 182 | + def forward(self): |
| 183 | + self.vqa_extractor.run( |
| 184 | + storage=self.storage.step(), |
| 185 | + question_pdf_path_key="question_pdf_path", |
| 186 | + answer_pdf_path_key="answer_pdf_path", |
| 187 | + pdf_path_key="pdf_path", |
| 188 | + subject_key="subject", |
| 189 | + output_dir_key="output_dir", |
| 190 | + output_jsonl_key="output_jsonl_path", |
| 191 | + mineru_backend='vlm-vllm-engine', |
| 192 | + ) |
| 193 | + |
| 194 | +if __name__ == "__main__": |
| 195 | + pipeline = VQA_extract_optimized_pipeline() |
| 196 | + pipeline.forward() |
| 197 | +``` |
| 198 | + |
| 199 | +--- |
| 200 | + |
| 201 | +Pipeline source: `DataFlow/pipelines/vqa_extract_optimized_pipeline.py` |
| 202 | + |
| 203 | +Use this pipeline whenever you need structured QA data distilled directly from PDF textbooks with figure references intact. |
0 commit comments