|
| 1 | +import os |
| 2 | +import matplotlib.pyplot as plt |
| 3 | +import pandas as pd |
| 4 | +import numpy as np |
| 5 | +import argparse |
| 6 | + |
| 7 | +# Function to pool the matrix |
| 8 | +def pool_matrix(df, N_prime, M_prime): |
| 9 | + # Get the original dimensions |
| 10 | + N, M = df.shape |
| 11 | + |
| 12 | + # Calculate block sizes |
| 13 | + A = N // N_prime |
| 14 | + B = M // M_prime |
| 15 | + |
| 16 | + if N % N_prime != 0 or M % M_prime != 0: |
| 17 | + raise ValueError("N and M must be divisible by N' and M' respectively.") |
| 18 | + |
| 19 | + # Reshape into blocks and calculate mean for each block |
| 20 | + pooled = ( |
| 21 | + df.values.reshape(N_prime, A, M_prime, B) # Reshape into blocks |
| 22 | + .mean(axis=(1, 3)) # Average over the blocks |
| 23 | + ) |
| 24 | + |
| 25 | + # Convert back to DataFrame for better readability |
| 26 | + return pd.DataFrame(pooled) |
| 27 | + |
| 28 | +# Function to write matrix with coordinates |
| 29 | +def write_matrix_with_coordinates(df, lenX, lenY, outputfile="output.txt"): |
| 30 | + # Get number of rows and columns from the matrix shape |
| 31 | + rows, cols = df.shape |
| 32 | + |
| 33 | + # Generate coordinate arrays for X and Y |
| 34 | + x_coords = np.linspace(-lenX/2, lenX/2, cols) |
| 35 | + y_coords = np.linspace(-lenY/2, lenY/2, rows) |
| 36 | + |
| 37 | + # Open file to write the output |
| 38 | + with open(outputfile, "w") as file: |
| 39 | + # Write header row with x coordinates |
| 40 | + file.write(" ".join([f"{x:.2f}" for x in x_coords]) + "\n") |
| 41 | + |
| 42 | + # Write each row with y coordinates and corresponding matrix data |
| 43 | + for y, row_data in zip(y_coords, df.values): |
| 44 | + file.write(f"{y:.2f}" + " " + " ".join(map(str, row_data)) + "\n") |
| 45 | + |
| 46 | + return y_coords, df |
| 47 | + |
| 48 | +# Main function that will be executed when the script runs |
| 49 | +def main(): |
| 50 | + # Parse command-line arguments |
| 51 | + parser = argparse.ArgumentParser(description="Process matrix with coordinate output.") |
| 52 | + |
| 53 | + # Define the flags and their corresponding arguments |
| 54 | + parser.add_argument('-i', '--inputfile', type=str, required=True, help="Input file path") |
| 55 | + parser.add_argument('-o', '--outputfile', type=str, required=True, help="Output file path") |
| 56 | + parser.add_argument('-n', '--NumRows', type=int, required=True, help="Number of rows of the final matrix.") |
| 57 | + parser.add_argument('-m', '--NumColumns', type=int, required=True, help="Number of columns of the final matrix.") |
| 58 | + parser.add_argument('-x', '--lenX', type=float, required=True, help="Length of X axis") |
| 59 | + parser.add_argument('-y', '--lenY', type=float, required=True, help="Length of Y axis") |
| 60 | + |
| 61 | + args = parser.parse_args() |
| 62 | + |
| 63 | + # Read the input file into a DataFrame |
| 64 | + df = pd.read_csv(args.inputfile, sep='\s+', header=None, index_col=None) |
| 65 | + |
| 66 | + # Pool the matrix if necessary |
| 67 | + pooled_df = pool_matrix(df, args.N_prime, args.M_prime) |
| 68 | + |
| 69 | + # Write the matrix with coordinates to the output file |
| 70 | + write_matrix_with_coordinates(pooled_df, lenX=args.lenX, lenY=args.lenY, outputfile=args.outputfile) |
| 71 | + |
| 72 | +if __name__ == "__main__": |
| 73 | + main() |
0 commit comments