Skip to content

Commit a08ba33

Browse files
committed
Release InternVL 1.5
1 parent 88f1e92 commit a08ba33

19 files changed

+3175
-597
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -169,3 +169,4 @@ internvl_chat/shell/
169169
internvl_chat/data/
170170
Husky2/*
171171
data_process/
172+
*distillation*

internvl_chat/internvl/conversation.py

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -737,12 +737,9 @@ def get_conv_template(name: str) -> Conversation:
737737
sep='<|im_end|>',
738738
stop_token_ids=[
739739
2,
740-
92541,
741-
92542,
742740
92543,
743-
92540,
744-
],
745-
stop_str='<|endoftext|>',
741+
92542
742+
]
746743
)
747744
)
748745

Lines changed: 150 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,150 @@
1+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2+
#
3+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4+
#
5+
# Licensed under the Apache License, Version 2.0 (the "License");
6+
# you may not use this file except in compliance with the License.
7+
# You may obtain a copy of the License at
8+
#
9+
# http://www.apache.org/licenses/LICENSE-2.0
10+
#
11+
# Unless required by applicable law or agreed to in writing, software
12+
# distributed under the License is distributed on an "AS IS" BASIS,
13+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14+
# See the License for the specific language governing permissions and
15+
# limitations under the License.
16+
""" InternLM2 model configuration"""
17+
18+
from transformers.configuration_utils import PretrainedConfig
19+
from transformers.utils import logging
20+
21+
logger = logging.get_logger(__name__)
22+
23+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24+
25+
26+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
27+
class InternLM2Config(PretrainedConfig):
28+
r"""
29+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32+
33+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34+
documentation from [`PretrainedConfig`] for more information.
35+
36+
37+
Args:
38+
vocab_size (`int`, *optional*, defaults to 32000):
39+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40+
`inputs_ids` passed when calling [`InternLM2Model`]
41+
hidden_size (`int`, *optional*, defaults to 4096):
42+
Dimension of the hidden representations.
43+
intermediate_size (`int`, *optional*, defaults to 11008):
44+
Dimension of the MLP representations.
45+
num_hidden_layers (`int`, *optional*, defaults to 32):
46+
Number of hidden layers in the Transformer encoder.
47+
num_attention_heads (`int`, *optional*, defaults to 32):
48+
Number of attention heads for each attention layer in the Transformer encoder.
49+
num_key_value_heads (`int`, *optional*):
50+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54+
by meanpooling all the original heads within that group. For more details checkout [this
55+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56+
`num_attention_heads`.
57+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58+
The non-linear activation function (function or string) in the decoder.
59+
max_position_embeddings (`int`, *optional*, defaults to 2048):
60+
The maximum sequence length that this model might ever be used with. Typically set this to something large
61+
just in case (e.g., 512 or 1024 or 2048).
62+
initializer_range (`float`, *optional*, defaults to 0.02):
63+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65+
The epsilon used by the rms normalization layers.
66+
use_cache (`bool`, *optional*, defaults to `True`):
67+
Whether or not the model should return the last key/values attentions (not used by all models). Only
68+
relevant if `config.is_decoder=True`.
69+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70+
Whether to tie weight embeddings
71+
Example:
72+
73+
"""
74+
model_type = 'internlm2'
75+
_auto_class = 'AutoConfig'
76+
77+
def __init__( # pylint: disable=W0102
78+
self,
79+
vocab_size=103168,
80+
hidden_size=4096,
81+
intermediate_size=11008,
82+
num_hidden_layers=32,
83+
num_attention_heads=32,
84+
num_key_value_heads=None,
85+
hidden_act='silu',
86+
max_position_embeddings=2048,
87+
initializer_range=0.02,
88+
rms_norm_eps=1e-6,
89+
use_cache=True,
90+
pad_token_id=0,
91+
bos_token_id=1,
92+
eos_token_id=2,
93+
tie_word_embeddings=False,
94+
bias=True,
95+
rope_theta=10000,
96+
rope_scaling=None,
97+
attn_implementation='eager',
98+
**kwargs,
99+
):
100+
self.vocab_size = vocab_size
101+
self.max_position_embeddings = max_position_embeddings
102+
self.hidden_size = hidden_size
103+
self.intermediate_size = intermediate_size
104+
self.num_hidden_layers = num_hidden_layers
105+
self.num_attention_heads = num_attention_heads
106+
self.bias = bias
107+
108+
if num_key_value_heads is None:
109+
num_key_value_heads = num_attention_heads
110+
self.num_key_value_heads = num_key_value_heads
111+
112+
self.hidden_act = hidden_act
113+
self.initializer_range = initializer_range
114+
self.rms_norm_eps = rms_norm_eps
115+
self.use_cache = use_cache
116+
self.rope_theta = rope_theta
117+
self.rope_scaling = rope_scaling
118+
self._rope_scaling_validation()
119+
120+
self.attn_implementation = attn_implementation
121+
if self.attn_implementation is None:
122+
self.attn_implementation = 'eager'
123+
super().__init__(
124+
pad_token_id=pad_token_id,
125+
bos_token_id=bos_token_id,
126+
eos_token_id=eos_token_id,
127+
tie_word_embeddings=tie_word_embeddings,
128+
**kwargs,
129+
)
130+
131+
def _rope_scaling_validation(self):
132+
"""
133+
Validate the `rope_scaling` configuration.
134+
"""
135+
if self.rope_scaling is None:
136+
return
137+
138+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139+
raise ValueError(
140+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141+
f'got {self.rope_scaling}'
142+
)
143+
rope_scaling_type = self.rope_scaling.get('type', None)
144+
rope_scaling_factor = self.rope_scaling.get('factor', None)
145+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146+
raise ValueError(
147+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148+
)
149+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")

0 commit comments

Comments
 (0)