Skip to content

Commit 0dcbdbb

Browse files
eguindonrzach
authored andcommitted
Fix error in problem about duals of characteristic axioms
The biconditionals are not derivable in bare K. I rephrase the claim in terms of identity of modal systems (seems like the most natural option).
1 parent 0a400f7 commit 0dcbdbb

File tree

1 file changed

+8
-2
lines changed
  • content/normal-modal-logic/axioms-systems

1 file changed

+8
-2
lines changed

content/normal-modal-logic/axioms-systems/duals.tex

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,9 +28,15 @@
2828
by~$\Box$. \Ax{D}, i.e., $\Box!A \lif \Diamond!A$ is its own dual in
2929
that sense.
3030

31+
\begin{prop}\ollabel{prop:dualsys}
32+
For each !!{formula}~$!A$ in \olref[nml][prf][dua]{def:duals}:
33+
$\Log{K}!A = \Log{K}! A_{\Diamond}$.
34+
\end{prop}
35+
\begin{proof}
36+
Exercise.
37+
\end{proof}
3138
\begin{prob}
32-
Show that for each !!{formula}~$!A$ in \olref[nml][prf][dua]{def:duals}:
33-
$\Log{K} \Proves !A \liff !A_\Diamond$.
39+
Prove \olref[nml][prf][dua]{prop:dualsys}.
3440
\end{prob}
3541

3642
\end{document}

0 commit comments

Comments
 (0)