|
| 1 | +% Part: intuitionistic-logic |
| 2 | +% Chapter: tableaux |
| 3 | +% Section: rules |
| 4 | + |
| 5 | +\documentclass[../../../include/open-logic-section]{subfiles} |
| 6 | + |
| 7 | +\begin{document} |
| 8 | + |
| 9 | +\olfileid{int}{tab}{rul} |
| 10 | + |
| 11 | +\olsection{Rules for Intuitionistic Logic} |
| 12 | + |
| 13 | +The rules for the connectives $\land$ and $\lor$ are the same as for |
| 14 | +regular propositional signed !!{tableau}s, just with prefixes added. |
| 15 | +In each case, the rule applied to a signed !!{formula} |
| 16 | +$\sFmla{S}{!A}[\sigma]$ produces new !!{formula}s that are also |
| 17 | +prefixed by~$\sigma$. This should be intuitively clear: e.g., if $!A |
| 18 | +\land !B$ is true at (a world named by)~$\sigma$, then $!A$ and $!B$ |
| 19 | +are true at~$\sigma$ (and not at any other world). We collect the |
| 20 | +rules for $\land$ and $\lor$ in \olref{tab:prop-rules}. |
| 21 | + |
| 22 | +\begin{table} |
| 23 | + \[\def\arraystretch{3}\begin{array}{|c|c|} |
| 24 | + \hline |
| 25 | + \AxiomC{\sFmla{\True}{!A \land !B}[\sigma]} |
| 26 | + \RightLabel{\TRule{\True}{\land}} |
| 27 | + \UnaryInfC{\sFmla{\True}{!A}[\sigma]} |
| 28 | + \noLine |
| 29 | + \UnaryInfC{\sFmla{\True}{!B}[\sigma]} |
| 30 | + \DisplayProof |
| 31 | + & |
| 32 | + \AxiomC{\sFmla{\False}{!A \land !B}[\sigma]} |
| 33 | + \RightLabel{\TRule{\False}{\land}} |
| 34 | + \UnaryInfC{$\sFmla{\False}{!A}[\sigma] \quad \mid \quad |
| 35 | + \sFmla{\False}{!B}[\sigma]$} |
| 36 | + \DisplayProof |
| 37 | + \\[2ex] |
| 38 | + \hline |
| 39 | + \AxiomC{\sFmla{\True}{!A \lor !B}[\sigma]} |
| 40 | + \RightLabel{\TRule{\True}{\lor}} |
| 41 | + \UnaryInfC{$\sFmla{\True}{!A}[\sigma] \quad \mid \quad |
| 42 | + \sFmla{\True}{!B}[\sigma]$} |
| 43 | + \DisplayProof |
| 44 | + & |
| 45 | + \AxiomC{\sFmla{\False}{!A \lor !B}[\sigma]} |
| 46 | + \RightLabel{\TRule{\False}{\lor}} |
| 47 | + \UnaryInfC{\sFmla{\False}{!A}[\sigma]} |
| 48 | + \noLine |
| 49 | + \UnaryInfC{\sFmla{\False}{!B}[\sigma]} |
| 50 | + \DisplayProof |
| 51 | + \\[2ex] |
| 52 | + \hline |
| 53 | + \end{array}\] |
| 54 | + \caption{Prefixed !!{tableau} rules for $\land$ and $\lor$} |
| 55 | + \ollabel{tab:prop-rules} |
| 56 | +\end{table} |
| 57 | + |
| 58 | +The closure condition is similar to that for ordinary !!{tableau}s, |
| 59 | +although we require that not just the !!{formula}s, but also that the |
| 60 | +prefixes must match. In fact, we can be somewhat more liberal: Since |
| 61 | +in intuitionistic models, !!{formula}s, once true, remain true, it is |
| 62 | +impossible that $!A$ is true at~$\sigma$ but false at any accessible |
| 63 | +prefix~$\sigma.{*}$. So a branch is closed if it contains both |
| 64 | +\[ |
| 65 | +\sFmla{\True}{!A}[\sigma] \quad\text{and}\quad \sFmla{\False}{!A}[\sigma.{*}] |
| 66 | +\] |
| 67 | +for some prefix $\sigma$ and !!{formula}~$!A$. Note that if the signs |
| 68 | +are reversed, i.e., if it contains |
| 69 | +\[ |
| 70 | +\sFmla{\False}{!A}[\sigma] \quad\text{and}\quad \sFmla{\True}{!A}[\sigma.{*}] |
| 71 | +\] |
| 72 | +the branch is closed only if $*$ is the empty sequence. |
| 73 | + |
| 74 | +In addition, a branch is closed if it contains~$\sFmla{\True}{\bot}[\sigma]$. |
| 75 | + |
| 76 | +The rules for setting up assumptions is also as for ordinary |
| 77 | +!!{tableau}s, except that for assumptions we always use the |
| 78 | +prefix~$1$. (It does not matter which prefix we use, as long as it's |
| 79 | +the same for all assumptions.) So, e.g., we say that |
| 80 | +\[ |
| 81 | +!B_1, \dots, !B_n \Proves !A |
| 82 | +\] |
| 83 | +iff there is a closed tableau for the assumptions |
| 84 | +\[ |
| 85 | +\sFmla{\True}{!B_1}[1], \dots, \sFmla{\True}{!B_n}[1], |
| 86 | +\sFmla{\False}{!A}[1]. |
| 87 | +\] |
| 88 | + |
| 89 | +For the conditional~$\lif$, the rules differ from the classical and |
| 90 | +modal cases. The $\TRule{\lif}{\True}$ rule extends a branch |
| 91 | +containing $\sFmla{\True}{!A \lif !B}[\sigma]$ by |
| 92 | +$\sFmla{\True}{!A}[\sigma.{*}]$ and $\sFmla{\False}{!B}[\sigma.{*}]$ on two |
| 93 | +different branches. It can only be applied for a prefix~$\sigma.{*}$ |
| 94 | +which \emph{already} occurs on the branch in which it is applied. |
| 95 | +Let's call such a prefix ``used'' (on the branch). (Since $\sigma.{*}$ |
| 96 | +includes $\sigma$ itself, the rule can always be applied by adding the |
| 97 | +prefixed signed formulas $\sFmla{\True}{!A}[\sigma]$ and |
| 98 | +$\sFmla{\False}{!B}[\sigma]$ on separate branches.) |
| 99 | + |
| 100 | +The $\TRule{\lif}{\False}$ rule extends a branch containing |
| 101 | +$\sFmla{\False}{!A \lif !B}[\sigma]$ by both |
| 102 | +$\sFmla{\True}{!A}[\sigma.n]$ and $\sFmla{\False}{!B}[\sigma.n]$ on |
| 103 | +the same branch, with $\sigma.n$ a prefix new to the branch. |
| 104 | + |
| 105 | +The rules for $\lnot$ are defined analogously (using the definition of |
| 106 | +$\lnot !A$ as $!A \lif \lfalse$). |
| 107 | + |
| 108 | +The rules are given in \olref{tab:rules-lif-lnot}. |
| 109 | + |
| 110 | +\begin{table} |
| 111 | + \[\def\arraystretch{3}\begin{array}{|c|c|} |
| 112 | + \hline |
| 113 | + \AxiomC{\sFmla{\True}{\lnot !A}[\sigma]} |
| 114 | + \RightLabel{\TRule{\True}{\lnot}} |
| 115 | + \UnaryInfC{$\sFmla{\False}{!A}[\sigma.{*}]$} |
| 116 | + \DisplayProof |
| 117 | + & |
| 118 | + \AxiomC{\sFmla{\False}{\lnot !A}[\sigma]} |
| 119 | + \RightLabel{\TRule{\False}{\lnot}} |
| 120 | + \UnaryInfC{\sFmla{\True}{!A}[\sigma.n]} |
| 121 | + \DisplayProof |
| 122 | + \\[1ex] |
| 123 | + \text{$\sigma.{*}$ is used} & \text{$\sigma.n$ is new}\\ |
| 124 | + \hline |
| 125 | + \AxiomC{\sFmla{\True}{!A \lif !B}[\sigma]} |
| 126 | + \RightLabel{\TRule{\True}{\lif}} |
| 127 | + \UnaryInfC{$\sFmla{\False}{!A}[\sigma.{*}] \quad \mid \quad |
| 128 | + \sFmla{\True}{!B}[\sigma.{*}]$} |
| 129 | + \DisplayProof |
| 130 | + & |
| 131 | + \AxiomC{\sFmla{\False}{!A \lif !B}[\sigma]} |
| 132 | + \RightLabel{\TRule{\False}{\lif}} |
| 133 | + \UnaryInfC{\sFmla{\True}{!A}[\sigma.n]} |
| 134 | + \noLine |
| 135 | + \UnaryInfC{\sFmla{\False}{!B}[\sigma.n]} |
| 136 | + \DisplayProof |
| 137 | + \\[1ex] |
| 138 | + \text{$\sigma.{*}$ is used} & \text{$\sigma.n$ is new}\\ |
| 139 | + \hline |
| 140 | + \end{array}\] |
| 141 | + \caption{Prefixed !!{tableau} rules for $\lnot$ and $\lif$} |
| 142 | + \ollabel{tab:rules-lif-lnot} |
| 143 | +\end{table} |
| 144 | + |
| 145 | +\end{document} |
0 commit comments