Skip to content

Commit 5df41c7

Browse files
gabelthompsonrzach
authored andcommitted
Update iso.tex
Changed \olref[sfr][rel][ord]{prop:extensionality-totalorders} to \olref[sfr][rel][ord]{prop:extensionality-strictlinearorders} based on "total order" definition fixes.
1 parent 4407f40 commit 5df41c7

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

content/set-theory/ordinals/iso.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@
5353

5454
Generalising, $(\forall x \in B)(x \lessdot f(a) \liff x \lessdot
5555
g(a))$. It follows that $f(a) = g(a)$ by
56-
\olref[sfr][rel][ord]{prop:extensionality-totalorders}. So $(\forall
56+
\olref[sfr][rel][ord]{prop:extensionality-strictlinearorders}. So $(\forall
5757
a \in A)f(a) = g(a)$ by \olref[wo]{propwoinduction}.
5858
\end{proof}\noindent
5959
This gives some sense that well-orderings are robust. But to continue
@@ -79,7 +79,7 @@
7979
$f$ is a bijection and $A_a \subsetneq A$, using \olref[wo]{wo:strictorder} let $b \in A$ be the
8080
$<$-least !!{element} of $A$ such that $b \neq f(b)$. We'll show that
8181
$(\forall x \in A)(x<b \liff x < f(b))$, from which it will follow by
82-
\olref[sfr][rel][ord]{prop:extensionality-totalorders} that $b =
82+
\olref[sfr][rel][ord]{prop:extensionality-strictlinearorders} that $b =
8383
f(b)$, completing the reductio.
8484

8585
Suppose $x < b$. So $x = f(x)$, by the choice of $b$. And $f(x) <

0 commit comments

Comments
 (0)