Skip to content

Commit e0ad2dc

Browse files
Fix typos in Partial Isomorphisms
1 parent 2c516f0 commit e0ad2dc

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

content/model-theory/basics/partial-iso.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -152,7 +152,7 @@ \section{Partial Isomorphisms}
152152
$x_1$, \dots,~$x_n$, then $\Sat{M}{!A}[s_1]$ if and
153153
only if~$\Sat{N}{!A}[s_2]$.
154154
\item $I_{n+1} (\mathbf{a},\mathbf{b})$ if and only if for every
155-
$a\in A$ there is a $b\in B$ such that $I_n
155+
$a\in \Domain M$ there is a $b\in \Domain N$ such that $I_n
156156
(\mathbf{a}a,\mathbf{b}b)$, and vice-versa.
157157
\end{enumerate}
158158
\end{defn}
@@ -198,7 +198,7 @@ \section{Partial Isomorphisms}
198198

199199
Given $a \in \Domain M$, let $!T^a_n$ be set of !!{formula}s
200200
$!B(x,\mathbf{y})$ of rank no greater than $n$ satisfied by
201-
$\mathbf{a}a$ in $\Struct{M}$; $\tau^a_n$ is finite, so we can
201+
$\mathbf{a}a$ in $\Struct{M}$; $!T^a_n$ is finite, so we can
202202
assume it is a single first-order !!{formula}. It follows that
203203
$\mathbf{a}$ satisfies $\lexists[x][!T^a_n(x,\mathbf{y})]$, which
204204
has quantifier rank no greater than $n+1$. By hypothesis

0 commit comments

Comments
 (0)