Skip to content

Commit e12adf5

Browse files
authored
Update recursion.tex
Small typo fixed in proof of bounded recursion; to get a γ+ approximation, we add <γ, τ(g)>
1 parent f405d17 commit e12adf5

File tree

1 file changed

+3
-2
lines changed

1 file changed

+3
-2
lines changed

content/set-theory/spine/recursion.tex

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@
3737
The empty function is trivially an $\emptyset$-approximation.
3838

3939
If $g$ is a $\gamma$-approximation, then $g \cup
40-
\{\tuple{\ordsucc{\gamma}, \tau(g)}\}$ is a $\ordsucc{\gamma}$-approximation.
40+
\{\tuple{\gamma, \tau(g)}\}$ is a $\ordsucc{\gamma}$-approximation.
4141

4242
If $\gamma$ is a limit ordinal and $g_\delta$ is a $\delta$-approximation for all $\delta < \gamma$, let $g = \bigcup_{\delta \in \gamma} g_\delta$. This
4343
is a function, since our various $g_\delta$s agree on all values. And
@@ -127,4 +127,5 @@
127127
Now, to vindicate \olref[valpha]{defValphas}, just take $A
128128
= \emptyset$ and $\tau(x) = \Pow{x}$ and $\theta(x) = \bigcup x$. At long last, this vindicates the definition of the $V_\alpha$s!{}
129129

130-
\end{document}
130+
131+
\end{document}

0 commit comments

Comments
 (0)