Skip to content

Commit fc8a66d

Browse files
beastaughrzach
authored andcommitted
Define satisfaction for sets of sentences.
1 parent 27ac27a commit fc8a66d

File tree

1 file changed

+10
-4
lines changed

1 file changed

+10
-4
lines changed

content/first-order-logic/syntax-and-semantics/assignments.tex

Lines changed: 10 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -231,10 +231,18 @@
231231
\end{defn}
232232

233233
If $\Sat{M}{!A}$, we also simply say that \emph{$!A$ is true
234-
in~$\Struct{M}$.}
234+
in~$\Struct{M}$.} The notion of satisfaction naturally extends
235+
from individual !!{sentence}s to sets of !!{sentence}s.
236+
237+
\begin{defn}
238+
\ollabel{defn:sat}
239+
If $\Gamma$ is a set of !!{sentence}s~$\Gamma$, we say that
240+
!!a{structure}~$\Struct M$ \emph{satisfies}~$\Gamma$,
241+
$\Sat{M}{\Gamma}$, iff $\Sat{M}{!A}$ for all $!A \in \Gamma$.
242+
\end{defn}
235243

236244
\begin{prop}\ollabel{prop:sentence-sat-true}
237-
Let $\Struct{M}$ be !!a{structure}, $!A$ be a sentence, and $s$ a
245+
Let $\Struct{M}$ be !!a{structure}, $!A$ be !!a{sentence}, and $s$ a
238246
variable assignment. $\Sat{M}{!A}$ iff $\Sat{M}{!A}[s]$.
239247
\end{prop}
240248

@@ -340,6 +348,4 @@
340348
$\lforall[x][\lexists[y][!A(x,y)]]$.)
341349
\end{prob}
342350

343-
344-
345351
\end{document}

0 commit comments

Comments
 (0)