|
| 1 | +import argparse |
| 2 | +import re |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import json |
| 6 | + |
| 7 | +from ctranslate2.specs import ( |
| 8 | + TransformerSpec, |
| 9 | + TransformerEncoderSpec, |
| 10 | + TransformerDecoderSpec, |
| 11 | +) |
| 12 | +from ctranslate2.specs.common_spec import Activation |
| 13 | +from ctranslate2.specs.moonshine_spec import MoonshineSpec |
| 14 | +from ctranslate2.converters import utils |
| 15 | +from ctranslate2.converters.converter import Converter |
| 16 | +from safetensors.torch import safe_open |
| 17 | + |
| 18 | + |
| 19 | +class MoonshineConverter(Converter): |
| 20 | + def __init__(self, safetensor_file, vocab_file, moonshine_variant): |
| 21 | + self.safetensor_file = safetensor_file |
| 22 | + self.vocab_file = vocab_file |
| 23 | + if moonshine_variant == 'tiny': |
| 24 | + self.layers = 6 |
| 25 | + self.heads = 8 |
| 26 | + elif moonshine_variant == 'base': |
| 27 | + self.layers=8 |
| 28 | + self.heads = 8 |
| 29 | + else: |
| 30 | + raise ValueError('moonshine_variant must be one of ["tiny", "base"]') |
| 31 | + |
| 32 | + def _load(self): |
| 33 | + spec = MoonshineSpec(num_encoder_layers=self.layers, num_encoder_heads=self.heads, num_decoder_layers=self.layers, num_decoder_heads=self.heads) |
| 34 | + self.load_preprocessor(spec.preprocessor) |
| 35 | + self.load_encoder(spec.encoder) |
| 36 | + self.load_decoder(spec.decoder) |
| 37 | + spec.register_vocabulary(self.load_vocab()) |
| 38 | + return spec |
| 39 | + |
| 40 | + def load_vocab(self): |
| 41 | + tokens_dict = {} |
| 42 | + with open(self.vocab_file, encoding="utf-8") as f: |
| 43 | + tokenizer_dict = json.load(f) |
| 44 | + d = tokenizer_dict['model']['vocab'] |
| 45 | + for token in d.keys(): |
| 46 | + idx = d[token] |
| 47 | + token = re.sub(r"\\([^x])", r"\1", token) |
| 48 | + token = token[1:-1] |
| 49 | + if token.startswith("\\x"): |
| 50 | + # Convert the digraph \x to the actual escaped sequence. |
| 51 | + token = chr(int(token[2:], base=16)) |
| 52 | + elif token.startswith("'") and token.endswith("'"): |
| 53 | + token = token[1:-1] |
| 54 | + token = token.replace("''", "'") |
| 55 | + if idx is not None: |
| 56 | + tokens_dict[idx] = token |
| 57 | + added_tokens = tokenizer_dict['added_tokens'] |
| 58 | + for t in added_tokens: |
| 59 | + tokens_dict[t['id']] = t['content'] |
| 60 | + |
| 61 | + return [tokens_dict[idx] for idx in sorted(tokens_dict.keys())] |
| 62 | + |
| 63 | + def load_attention(self, att_spec, st_prefix, self_attention=True): |
| 64 | + st = safe_open(self.safetensor_file, framework="pt", device="cpu") |
| 65 | + attn_w = [ |
| 66 | + st.get_tensor(f"{st_prefix}.to_{dst}.weight") for dst in ["q", "k", "v"] |
| 67 | + ] |
| 68 | + if self_attention: |
| 69 | + att_spec.linear[0].weight = np.concatenate(attn_w) |
| 70 | + else: |
| 71 | + att_spec.linear[0].weight = attn_w[0] |
| 72 | + att_spec.linear[1].weight = np.concatenate(attn_w[1:]) |
| 73 | + att_spec.linear[-1].weight = st.get_tensor(f"{st_prefix}.to_out.weight") |
| 74 | + |
| 75 | + def load_ffn(self, ffn_spec, st_prefix, swiglu=False): |
| 76 | + st = safe_open(self.safetensor_file, framework="pt", device="cpu") |
| 77 | + if swiglu: |
| 78 | + ffn_spec.linear_0_noact.weight = st.get_tensor(f"{st_prefix}.ff_noact.weight") |
| 79 | + ffn_spec.linear_0.weight = st.get_tensor(f"{st_prefix}.ff_proj.weight") |
| 80 | + ffn_spec.linear_0_noact.bias = st.get_tensor(f"{st_prefix}.ff_noact.bias") |
| 81 | + ffn_spec.linear_0.bias = st.get_tensor(f"{st_prefix}.ff_proj.bias") |
| 82 | + ffn_spec.linear_1.weight = st.get_tensor(f"{st_prefix}.ff_out.weight") |
| 83 | + ffn_spec.linear_1.bias = st.get_tensor(f"{st_prefix}.ff_out.bias") |
| 84 | + else: |
| 85 | + ffn_spec.linear_0.weight = st.get_tensor(f"{st_prefix}.ff.0.weight") |
| 86 | + ffn_spec.linear_0.bias = st.get_tensor(f"{st_prefix}.ff.0.bias") |
| 87 | + ffn_spec.linear_1.weight = st.get_tensor(f"{st_prefix}.ff.2.weight") |
| 88 | + ffn_spec.linear_1.bias = st.get_tensor(f"{st_prefix}.ff.2.bias") |
| 89 | + |
| 90 | + def load_layernorm(self, ln_spec, ln_prefix): |
| 91 | + st = safe_open(self.safetensor_file, framework="pt", device="cpu") |
| 92 | + ln_spec.gamma = st.get_tensor(f"{ln_prefix}.weight") |
| 93 | + ln_spec.beta = np.zeros(ln_spec.gamma.shape) |
| 94 | + |
| 95 | + def load_embeddings(self, embedding_spec, embedding_prefix): |
| 96 | + st = safe_open(self.safetensor_file, framework="pt", device="cpu") |
| 97 | + embedding_spec.weight = st.get_tensor(f"{embedding_prefix}.weight") |
| 98 | + |
| 99 | + def load_preprocessor(self, preprocess_spec): |
| 100 | + st = safe_open(self.safetensor_file, framework="pt", device="cpu") |
| 101 | + preprocess_prefix = "model.preprocessor.audio_preprocess" |
| 102 | + preprocess_spec.conv1.weight = st.get_tensor(f"{preprocess_prefix}.0.weight") |
| 103 | + preprocess_spec.layernorm.gamma = st.get_tensor(f"{preprocess_prefix}.2.weight") |
| 104 | + preprocess_spec.layernorm.beta = st.get_tensor(f"{preprocess_prefix}.2.bias") |
| 105 | + preprocess_spec.conv2.weight = st.get_tensor(f"{preprocess_prefix}.3.weight") |
| 106 | + preprocess_spec.conv2.bias = st.get_tensor(f"{preprocess_prefix}.3.bias") |
| 107 | + preprocess_spec.conv3.weight = st.get_tensor(f"{preprocess_prefix}.5.weight") |
| 108 | + preprocess_spec.conv3.bias = st.get_tensor(f"{preprocess_prefix}.5.bias") |
| 109 | + |
| 110 | + def load_encoder(self, encoder_spec): |
| 111 | + self.load_layernorm(encoder_spec.layer_norm, "model.encoder.post_norm") |
| 112 | + for idx, l in enumerate(encoder_spec.layer): |
| 113 | + self.load_attention(l.self_attention, f"model.encoder.layers.{idx}.attention") |
| 114 | + self.load_layernorm( |
| 115 | + l.self_attention.layer_norm, f"model.encoder.layers.{idx}.norm1" |
| 116 | + ) |
| 117 | + self.load_ffn(l.ffn, f"model.encoder.layers.{idx}.ff") |
| 118 | + self.load_layernorm(l.ffn.layer_norm, f"model.encoder.layers.{idx}.norm2") |
| 119 | + |
| 120 | + def load_decoder(self, decoder_spec): |
| 121 | + self.load_layernorm(decoder_spec.layer_norm, "model.decoder.final_norm") |
| 122 | + self.load_embeddings(decoder_spec.embeddings, "model.decoder.token_embedding") |
| 123 | + decoder_spec.projection.weight = decoder_spec.embeddings.weight |
| 124 | + for idx, l in enumerate(decoder_spec.layer): |
| 125 | + self.load_attention( |
| 126 | + l.self_attention, f"model.decoder.layers.{idx}.self_attention" |
| 127 | + ) |
| 128 | + self.load_layernorm( |
| 129 | + l.self_attention.layer_norm, f"model.decoder.layers.{idx}.norm1" |
| 130 | + ) |
| 131 | + self.load_attention(l.attention, f"model.decoder.layers.{idx}.cross_attention", self_attention=False) |
| 132 | + self.load_layernorm(l.attention.layer_norm, f"model.decoder.layers.{idx}.norm2") |
| 133 | + self.load_ffn(l.ffn, f"model.decoder.layers.{idx}.ff", swiglu=True) |
| 134 | + self.load_layernorm(l.ffn.layer_norm, f"model.decoder.layers.{idx}.norm3") |
| 135 | + |
| 136 | + |
| 137 | +def main(): |
| 138 | + parser = argparse.ArgumentParser( |
| 139 | + formatter_class=argparse.ArgumentDefaultsHelpFormatter |
| 140 | + ) |
| 141 | + parser.add_argument( |
| 142 | + "--model_path", required=True, help="Path to the model .safetensor file." |
| 143 | + ) |
| 144 | + parser.add_argument( |
| 145 | + "--vocab_path", |
| 146 | + required=True, |
| 147 | + help="Path to tokenizer.json config file.", |
| 148 | + ) |
| 149 | + parser.add_argument( |
| 150 | + "--moonshine_variant", |
| 151 | + required=True, |
| 152 | + help="Moonshine variant to convert. Must be one of ['tiny', 'base']", |
| 153 | + ) |
| 154 | + |
| 155 | + Converter.declare_arguments(parser) |
| 156 | + args = parser.parse_args() |
| 157 | + converter = MoonshineConverter(args.model_path, args.vocab_path, args.moonshine_variant) |
| 158 | + converter.convert_from_args(args) |
| 159 | + |
| 160 | + |
| 161 | +if __name__ == "__main__": |
| 162 | + main() |
0 commit comments