Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.

Commit 4d37026

Browse files
updated
1 parent a36a8c5 commit 4d37026

File tree

4 files changed

+164
-127
lines changed

4 files changed

+164
-127
lines changed

body.txt

Lines changed: 86 additions & 65 deletions
Original file line numberDiff line numberDiff line change
@@ -1,81 +1,102 @@
11

2-
This challenge focuses on creating a visually appealing card with a subtle 3D-like hover effect using Tailwind CSS. The effect will involve a slight shadow change and a small scale transformation on hover. This is a beginner to intermediate level challenge, perfect for practicing Tailwind's utility classes and understanding CSS transitions.
3-
4-
5-
## Description of the Styling
6-
7-
The card will be a simple rectangle containing some text. The base styling will be clean and minimalist. On hover, the card will subtly lift using a box-shadow adjustment and slightly increase in size. The transition will be smooth and natural, enhancing the 3D illusion.
8-
9-
10-
## Full Code
11-
12-
```html
13-
<!DOCTYPE html>
14-
<html>
15-
<head>
16-
<meta charset="UTF-8">
17-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
18-
<title>3D Card Hover Effect</title>
19-
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/tailwind.min.css" rel="stylesheet">
20-
</head>
21-
<body class="bg-gray-100">
22-
23-
<div class="container mx-auto p-8">
24-
<div class="max-w-sm bg-white rounded-lg shadow-md overflow-hidden md:max-w-lg">
25-
<div class="px-6 py-4">
26-
<div class="font-bold text-xl mb-2">Card Title</div>
27-
<p class="text-gray-700 text-base">
28-
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Voluptatibus quia, nulla! Maiores et perferendis eaque, exercitationem praesentium nihil.
29-
</p>
30-
</div>
31-
<div class="px-6 pt-4 pb-2">
32-
<span class="inline-block bg-gray-200 rounded-full px-3 py-1 text-sm font-semibold text-gray-700 mr-2">#tailwind</span>
33-
<span class="inline-block bg-gray-200 rounded-full px-3 py-1 text-sm font-semibold text-gray-700 mr-2">#css</span>
34-
<span class="inline-block bg-gray-200 rounded-full px-3 py-1 text-sm font-semibold text-gray-700">#hover</span>
35-
</div>
36-
</div>
37-
</div>
38-
39-
40-
<script>
41-
//No Javascript needed for this example
42-
</script>
43-
44-
</body>
45-
</html>
46-
```
2+
**Description of the Error:**
3+
4+
A common problem when working with Firebase Firestore and applications involving posts (like blog posts, social media updates, etc.) is performance degradation as the number of posts grows. Inefficient data structuring and querying can lead to slow load times, high latency, and ultimately, a poor user experience. Specifically, attempting to query large collections directly using `where` clauses on fields within nested objects or deeply structured documents can result in slow queries and potentially exceed Firestore's query limits. This often manifests as slow loading times for feeds or search results.
5+
6+
**Fixing the Problem Step-by-Step:**
7+
8+
This solution focuses on using a combination of techniques to improve performance: data denormalization and proper indexing.
9+
10+
**1. Data Modeling:**
11+
12+
Instead of embedding all post details (like comments, likes, user information) within a single `posts` collection, we'll denormalize the data. This means storing frequently accessed data redundantly in multiple locations for faster access.
13+
14+
**2. Collection Structure:**
15+
16+
We'll use two main collections:
17+
18+
* **`posts`:** This collection stores the core post information. Each document represents a single post with an ID. Only essential data like title, author ID (a reference), timestamp, and a short summary will be stored here.
19+
* **`postDetails`:** This collection stores detailed information about each post. The document ID will be the same as the corresponding post in the `posts` collection. This will contain details like the full post content, comments, and likes.
20+
21+
**3. Code Implementation (using JavaScript/Node.js):**
22+
23+
```javascript
24+
// Import the Firebase Admin SDK
25+
const admin = require('firebase-admin');
26+
admin.initializeApp();
27+
const db = admin.firestore();
28+
29+
// Function to add a new post
30+
async function addPost(postData) {
31+
const postRef = db.collection('posts').doc();
32+
const postId = postRef.id;
33+
const postDetailsRef = db.collection('postDetails').doc(postId);
4734

48-
To see the effect, add the following CSS using the `<style>` tag or your preferred method within the `<head>`:
35+
const post = {
36+
title: postData.title,
37+
authorId: postData.authorId, //Reference to the user document
38+
timestamp: admin.firestore.FieldValue.serverTimestamp(),
39+
summary: postData.summary,
40+
};
4941

50-
```css
51-
.shadow-md:hover {
52-
transform: translateY(-5px) scale(1.02);
53-
box-shadow: 0 10px 20px rgba(0,0,0,0.2);
54-
transition: all 0.3s ease;
42+
const postDetails = {
43+
content: postData.content,
44+
comments: [], //Initialize empty array
45+
likes: [], //Initialize empty array
46+
};
47+
48+
await Promise.all([
49+
postRef.set(post),
50+
postDetailsRef.set(postDetails),
51+
]);
52+
53+
console.log('Post added:', postId);
54+
}
55+
56+
57+
// Function to fetch posts (Example: fetching the first 10 posts)
58+
async function getPosts() {
59+
const postsSnapshot = await db.collection('posts').orderBy('timestamp', 'desc').limit(10).get();
60+
const posts = [];
61+
for (const doc of postsSnapshot.docs) {
62+
const post = doc.data();
63+
post.id = doc.id;
64+
posts.push(post);
65+
}
66+
return posts;
5567
}
68+
69+
70+
// Example usage
71+
const newPost = {
72+
title: 'My New Post',
73+
authorId: 'user123', // Replace with actual user ID
74+
content: 'This is the full content of my new post.',
75+
summary: 'Short summary of my post.'
76+
};
77+
78+
addPost(newPost);
79+
80+
getPosts().then(posts => console.log('Posts:', posts));
81+
82+
5683
```
5784

85+
**4. Indexing:**
5886

87+
Create an index on the `timestamp` field in the `posts` collection to efficiently order and retrieve posts by date. Firestore automatically creates an index for your top-level fields but it's good practice to explicitly check and make sure that indexes exist for your frequently used queries. Go to your Firestore console and under your database, you will find Indexing option, click it and check if the index is present for timestamp in `posts` collection. If not, add it.
5988

60-
## Explanation
6189

62-
* **`container mx-auto p-8`**: Centers the card on the page and adds padding.
63-
* **`max-w-sm bg-white rounded-lg shadow-md overflow-hidden md:max-w-lg`**: Sets the card's maximum width, background color, rounded corners, shadow, and prevents content overflow. `md:max-w-lg` makes it wider on medium screens and up.
64-
* **`px-6 py-4`**: Adds padding to the card's content.
65-
* **`font-bold text-xl mb-2`**: Styles the card title.
66-
* **`text-gray-700 text-base`**: Styles the card's paragraph text.
67-
* **`inline-block bg-gray-200 rounded-full px-3 py-1 text-sm font-semibold text-gray-700 mr-2`**: Styles the tags.
68-
* **`transform: translateY(-5px) scale(1.02)`**: This is the core of the hover effect. `translateY(-5px)` moves the card slightly up, and `scale(1.02)` increases its size.
69-
* **`box-shadow: 0 10px 20px rgba(0,0,0,0.2)`**: Creates a more pronounced shadow on hover.
70-
* **`transition: all 0.3s ease;`**: Makes the transition smooth over 0.3 seconds using an ease timing function.
90+
**Explanation:**
7191

92+
By separating the core post data from detailed information, we reduce the size of the documents in the `posts` collection, making queries significantly faster. Fetching only the essential information first and then fetching detailed information for individual posts as needed optimizes data retrieval. The `orderBy` and `limit` clauses improve query efficiency for retrieving paginated lists of posts.
7293

7394

74-
## Resources to Learn More
95+
**External References:**
7596

76-
* **Tailwind CSS Documentation:** [https://tailwindcss.com/docs](https://tailwindcss.com/docs) (Excellent resource for learning Tailwind utility classes)
77-
* **CSS Transitions and Transforms:** [https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Transitions/Using_CSS_transitions](https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Transitions/Using_CSS_transitions) and [https://developer.mozilla.org/en-US/docs/Web/CSS/transform](https://developer.mozilla.org/en-US/docs/Web/CSS/transform) (Learn the basics of CSS transitions and transformations)
78-
* **MDN Web Docs (General CSS):** [https://developer.mozilla.org/en-US/docs/Web/CSS](https://developer.mozilla.org/en-US/docs/Web/CSS) (A comprehensive resource for all things CSS)
97+
* [Firestore Data Modeling](https://firebase.google.com/docs/firestore/design-overview)
98+
* [Firestore Query Limitations](https://firebase.google.com/docs/firestore/query-data/query-limitations)
99+
* [Firestore Indexing](https://firebase.google.com/docs/firestore/query-data/indexing)
79100

80101

81102
Copyrights (c) OpenRockets Open-source Network. Free to use, copy, share, edit or publish.

errors/javascript/efficiently-storing-and-querying-large-post-collections-in-firebase-firestore/README.md

Lines changed: 76 additions & 60 deletions
Original file line numberDiff line numberDiff line change
@@ -3,86 +3,102 @@
33

44
**Description of the Error:**
55

6-
A common problem when working with posts (e.g., blog posts, social media updates) in Firebase Firestore is performance degradation as the number of posts grows. Directly querying a large collection of posts, especially with complex filtering or ordering, can lead to slow load times and potentially exceed Firestore's query limitations. This is because Firestore retrieves and processes *all* matching documents before returning the results to the client, making it inefficient for large datasets.
7-
6+
A common problem when working with Firebase Firestore and applications involving posts (like blog posts, social media updates, etc.) is performance degradation as the number of posts grows. Inefficient data structuring and querying can lead to slow load times, high latency, and ultimately, a poor user experience. Specifically, attempting to query large collections directly using `where` clauses on fields within nested objects or deeply structured documents can result in slow queries and potentially exceed Firestore's query limits. This often manifests as slow loading times for feeds or search results.
87

98
**Fixing the Problem Step-by-Step:**
109

11-
This solution utilizes pagination and potentially denormalization to improve performance when retrieving and displaying posts. We'll assume a basic post structure with `title`, `content`, `authorId`, and `timestamp` fields.
10+
This solution focuses on using a combination of techniques to improve performance: data denormalization and proper indexing.
1211

13-
**Step 1: Implement Pagination:**
12+
**1. Data Modeling:**
1413

15-
Pagination allows you to retrieve posts in smaller batches, improving load times and user experience. We'll use a `limit` and a `startAfter` cursor.
14+
Instead of embedding all post details (like comments, likes, user information) within a single `posts` collection, we'll denormalize the data. This means storing frequently accessed data redundantly in multiple locations for faster access.
1615

17-
```javascript
18-
// Get the first page of posts
19-
const firstQuery = db.collection("posts")
20-
.orderBy("timestamp", "desc")
21-
.limit(10); // Limit to 10 posts per page
22-
23-
firstQuery.get().then((querySnapshot) => {
24-
querySnapshot.forEach((doc) => {
25-
console.log(doc.id, doc.data());
26-
});
27-
28-
// Get the last document from the first page for the next query
29-
const lastDoc = querySnapshot.docs[querySnapshot.docs.length - 1];
30-
31-
// Get the next page of posts
32-
const nextQuery = db.collection("posts")
33-
.orderBy("timestamp", "desc")
34-
.startAfter(lastDoc)
35-
.limit(10);
36-
37-
nextQuery.get().then((nextQuerySnapshot) => {
38-
// Process the next page of posts
39-
nextQuerySnapshot.forEach((doc) => {
40-
console.log(doc.id, doc.data());
41-
});
42-
});
43-
});
44-
```
16+
**2. Collection Structure:**
4517

18+
We'll use two main collections:
4619

47-
**Step 2 (Optional): Denormalization for Specific Queries:**
20+
* **`posts`:** This collection stores the core post information. Each document represents a single post with an ID. Only essential data like title, author ID (a reference), timestamp, and a short summary will be stored here.
21+
* **`postDetails`:** This collection stores detailed information about each post. The document ID will be the same as the corresponding post in the `posts` collection. This will contain details like the full post content, comments, and likes.
4822

49-
If you frequently perform queries based on specific criteria (e.g., posts by a specific author), denormalization can improve performance. This involves duplicating relevant data in other collections or fields.
50-
51-
Let's say you often need to fetch posts by author:
23+
**3. Code Implementation (using JavaScript/Node.js):**
5224

5325
```javascript
54-
// Create a separate collection to store author-specific posts
55-
// This collection will contain references to posts
56-
57-
// When creating a new post, also add a reference to it in the author's collection
58-
db.collection("users").doc(authorId).collection("posts").add({
59-
postId: newPostRef.id // newPostRef is the reference to the post created in the "posts" collection
60-
});
61-
62-
63-
// Retrieve posts by author using this collection
64-
const authorPostsQuery = db.collection("users").doc(authorId).collection("posts");
65-
authorPostsQuery.get().then((querySnapshot)=>{
66-
querySnapshot.forEach((doc)=>{
67-
// Fetch the post data from the main "posts" collection using the postId
68-
db.collection('posts').doc(doc.data().postId).get().then((postDoc)=>{
69-
console.log(postDoc.data());
70-
})
71-
})
72-
})
26+
// Import the Firebase Admin SDK
27+
const admin = require('firebase-admin');
28+
admin.initializeApp();
29+
const db = admin.firestore();
30+
31+
// Function to add a new post
32+
async function addPost(postData) {
33+
const postRef = db.collection('posts').doc();
34+
const postId = postRef.id;
35+
const postDetailsRef = db.collection('postDetails').doc(postId);
36+
37+
const post = {
38+
title: postData.title,
39+
authorId: postData.authorId, //Reference to the user document
40+
timestamp: admin.firestore.FieldValue.serverTimestamp(),
41+
summary: postData.summary,
42+
};
43+
44+
const postDetails = {
45+
content: postData.content,
46+
comments: [], //Initialize empty array
47+
likes: [], //Initialize empty array
48+
};
49+
50+
await Promise.all([
51+
postRef.set(post),
52+
postDetailsRef.set(postDetails),
53+
]);
54+
55+
console.log('Post added:', postId);
56+
}
57+
58+
59+
// Function to fetch posts (Example: fetching the first 10 posts)
60+
async function getPosts() {
61+
const postsSnapshot = await db.collection('posts').orderBy('timestamp', 'desc').limit(10).get();
62+
const posts = [];
63+
for (const doc of postsSnapshot.docs) {
64+
const post = doc.data();
65+
post.id = doc.id;
66+
posts.push(post);
67+
}
68+
return posts;
69+
}
70+
71+
72+
// Example usage
73+
const newPost = {
74+
title: 'My New Post',
75+
authorId: 'user123', // Replace with actual user ID
76+
content: 'This is the full content of my new post.',
77+
summary: 'Short summary of my post.'
78+
};
79+
80+
addPost(newPost);
81+
82+
getPosts().then(posts => console.log('Posts:', posts));
83+
84+
7385
```
7486

87+
**4. Indexing:**
88+
89+
Create an index on the `timestamp` field in the `posts` collection to efficiently order and retrieve posts by date. Firestore automatically creates an index for your top-level fields but it's good practice to explicitly check and make sure that indexes exist for your frequently used queries. Go to your Firestore console and under your database, you will find Indexing option, click it and check if the index is present for timestamp in `posts` collection. If not, add it.
90+
91+
7592
**Explanation:**
7693

77-
* **Pagination:** By fetching posts in batches using `limit` and `startAfter`, you avoid retrieving and processing the entire collection, significantly improving performance for large datasets. The client only receives and renders the posts for the current page.
94+
By separating the core post data from detailed information, we reduce the size of the documents in the `posts` collection, making queries significantly faster. Fetching only the essential information first and then fetching detailed information for individual posts as needed optimizes data retrieval. The `orderBy` and `limit` clauses improve query efficiency for retrieving paginated lists of posts.
7895

79-
* **Denormalization:** While increasing data redundancy, denormalization can greatly improve the speed of frequently used queries by reducing the amount of data to traverse and join. This trades storage efficiency for query efficiency. You need to carefully consider the trade-offs based on your specific data access patterns.
8096

8197
**External References:**
8298

99+
* [Firestore Data Modeling](https://firebase.google.com/docs/firestore/design-overview)
83100
* [Firestore Query Limitations](https://firebase.google.com/docs/firestore/query-data/query-limitations)
84-
* [Firestore Pagination](https://firebase.google.com/docs/firestore/query-data/pagination)
85-
* [Firestore Data Modeling](https://firebase.google.com/docs/firestore/modeling/overview)
101+
* [Firestore Indexing](https://firebase.google.com/docs/firestore/query-data/indexing)
86102

87103

88104
Copyrights (c) OpenRockets Open-source Network. Free to use, copy, share, edit or publish.

0 commit comments

Comments
 (0)