Skip to content

Commit 243c2aa

Browse files
author
Bjarne Børresen
committed
NOT COMPLETED. Continued documentation
1 parent cce7621 commit 243c2aa

File tree

1 file changed

+19
-3
lines changed

1 file changed

+19
-3
lines changed

OpenHPL/Resources/Documents/Developer_docs/OpenHPL_Pipe.tex

Lines changed: 19 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -222,19 +222,35 @@ \subsection{Further details}
222222
%
223223
\subsection{Friction loss of variable area pipe}
224224
%
225-
In general it is difficult to find a closed form equation for the friction force for a pipe with varying area that is completely universal.
225+
In general it is difficult to find a closed form equation for the friction force for a pipe with varying area that is completely universal. However, if the change i area is small compared to the pipe length we can approximate the
226226
%
227227
\[
228-
F_{f}= A \cdot \rho \cdot g \cdot h_{f}= A \cdot \rho \cdot g \left[ f \cdot \left(\frac{L}{D}\right) \frac{v^{2}}{2g} \right] =\frac{1}{A} \cdot \rho \cdot g \left[ f \left(\frac{L}{D}\right) \frac{Q^{2}}{2g} \right]
228+
F_{f}= A \cdot \rho \cdot g \cdot h_{f}= A \cdot \rho \cdot g \left[ f \cdot \left(\frac{L}{D}\right) \frac{v^{2}}{2g} \right] =\frac{1}{A} \cdot \rho \cdot g \left[ f \cdot \left(\frac{L}{D}\right) \frac{Q^{2}}{2g} \right]
229+
\]
230+
%
231+
\[
232+
F_{f}= A \cdot \rho \cdot g \cdot h_{f}= \int \frac{1}{A(x)} \cdot \rho \cdot g \left[ f \cdot \left(\frac{1}{D(x)}\right) \frac{Q^{2}}{2g} \right] dx
229233
\]
230234
Assuming a linear diameter distribution from the inlet to the outlet
231235
\[
232236
D\left(x\right)=D_{1}+\frac{\left(D_{2}-D_{1} \right)}{L}\cdot x
233237
\]
234-
or
238+
and
239+
\[
240+
A\left(x\right)=\frac{\pi}{4} D^{2}
241+
\]
242+
%
235243
\[
236244
D\left(x\right)=D_{1}+\frac{\left(D_{2}-D_{1} \right)}{L}\cdot x
237245
\]
246+
%
247+
\[
248+
F_{f}= A \cdot \rho \cdot g \cdot h_{f}= \left[\frac{\rho \cdot L \cdot Q^{2}}{2} \right] \int \frac{1}{A(x)\cdot D(x)} dx
249+
\]
250+
%
251+
\[
252+
F_{f}= A \cdot \rho \cdot g \cdot h_{f}= \left[\frac{2 \rho \cdot L \cdot Q^{2}}{\pi} \right] \int \frac{1}{D^{3}(x)} dx
253+
\]
238254
%
239255
In principle the friction factor $f$ is a function of the Reynolds number $Re$ and relative roughness $\epsilon/D$. Ignoring this, and setting both to the constant value based on the mean value
240256

0 commit comments

Comments
 (0)