You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In general it is difficult to find a closed form equation for the friction force for a pipe with varying area that is completely universal.
225
+
In general it is difficult to find a closed form equation for the friction force for a pipe with varying area that is completely universal. However, if the change i area is small compared to the pipe length we can approximate the
226
226
%
227
227
\[
228
-
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= A \cdot\rho\cdot g \left[ f \cdot\left(\frac{L}{D}\right) \frac{v^{2}}{2g} \right] =\frac{1}{A} \cdot\rho\cdot g \left[ f \left(\frac{L}{D}\right) \frac{Q^{2}}{2g} \right]
228
+
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= A \cdot\rho\cdot g \left[ f \cdot\left(\frac{L}{D}\right) \frac{v^{2}}{2g} \right] =\frac{1}{A} \cdot\rho\cdot g \left[ f \cdot\left(\frac{L}{D}\right) \frac{Q^{2}}{2g} \right]
229
+
\]
230
+
%
231
+
\[
232
+
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= \int\frac{1}{A(x)} \cdot\rho\cdot g \left[ f \cdot\left(\frac{1}{D(x)}\right) \frac{Q^{2}}{2g} \right] dx
229
233
\]
230
234
Assuming a linear diameter distribution from the inlet to the outlet
231
235
\[
232
236
D\left(x\right)=D_{1}+\frac{\left(D_{2}-D_{1} \right)}{L}\cdot x
233
237
\]
234
-
or
238
+
and
239
+
\[
240
+
A\left(x\right)=\frac{\pi}{4} D^{2}
241
+
\]
242
+
%
235
243
\[
236
244
D\left(x\right)=D_{1}+\frac{\left(D_{2}-D_{1} \right)}{L}\cdot x
237
245
\]
246
+
%
247
+
\[
248
+
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= \left[\frac{\rho\cdot L \cdot Q^{2}}{2} \right] \int\frac{1}{A(x)\cdot D(x)} dx
249
+
\]
250
+
%
251
+
\[
252
+
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= \left[\frac{2 \rho\cdot L \cdot Q^{2}}{\pi} \right] \int\frac{1}{D^{3}(x)} dx
253
+
\]
238
254
%
239
255
In principle the friction factor $f$ is a function of the Reynolds number $Re$ and relative roughness $\epsilon/D$. Ignoring this, and setting both to the constant value based on the mean value
0 commit comments