|
| 1 | +using VortexStepMethod |
| 2 | +using LinearAlgebra |
| 3 | +using Test |
| 4 | + |
| 5 | +@testset "YAML Wing Deformation Tests" begin |
| 6 | + @testset "Simple Wing Deformation" begin |
| 7 | + # Load existing simple_wing.yaml |
| 8 | + simple_wing_file = test_data_path("yaml_geometry", "simple_wing.yaml") |
| 9 | + wing = Wing(simple_wing_file; n_panels=4, n_groups=2) |
| 10 | + body_aero = BodyAerodynamics([wing]) |
| 11 | + |
| 12 | + # Store original TE point for comparison |
| 13 | + i = length(body_aero.panels) ÷ 2 |
| 14 | + original_te_point = copy(body_aero.panels[i].TE_point_1) |
| 15 | + original_le_point = copy(body_aero.panels[i].LE_point_1) |
| 16 | + |
| 17 | + # Apply deformation with non-zero angles |
| 18 | + theta_dist = fill(deg2rad(30.0), wing.n_panels) # 30 degrees twist |
| 19 | + delta_dist = fill(deg2rad(5.0), wing.n_panels) # 5 degrees trailing edge deflection |
| 20 | + |
| 21 | + VortexStepMethod.deform!(wing, theta_dist, delta_dist) |
| 22 | + VortexStepMethod.reinit!(body_aero) |
| 23 | + |
| 24 | + # Check if TE point changed after deformation |
| 25 | + deformed_te_point = copy(body_aero.panels[i].TE_point_1) |
| 26 | + deformed_le_point = copy(body_aero.panels[i].LE_point_1) |
| 27 | + |
| 28 | + # TE point should change significantly due to twist and deflection |
| 29 | + @test !isapprox(original_te_point, deformed_te_point, atol=1e-2) |
| 30 | + @test deformed_te_point[3] < original_te_point[3] # TE should move down with positive twist |
| 31 | + |
| 32 | + # LE point should also change due to twist |
| 33 | + @test !isapprox(original_le_point, deformed_le_point, atol=1e-2) |
| 34 | + |
| 35 | + # Check delta is set correctly |
| 36 | + @test body_aero.panels[i].delta ≈ deg2rad(5.0) |
| 37 | + |
| 38 | + # Reset deformation with zero angles |
| 39 | + zero_theta_dist = zeros(wing.n_panels) |
| 40 | + zero_delta_dist = zeros(wing.n_panels) |
| 41 | + |
| 42 | + VortexStepMethod.deform!(wing, zero_theta_dist, zero_delta_dist) |
| 43 | + VortexStepMethod.reinit!(body_aero) |
| 44 | + |
| 45 | + # Check if TE point returned to original position |
| 46 | + reset_te_point = copy(body_aero.panels[i].TE_point_1) |
| 47 | + reset_le_point = copy(body_aero.panels[i].LE_point_1) |
| 48 | + @test original_te_point ≈ reset_te_point atol=1e-4 |
| 49 | + @test original_le_point ≈ reset_le_point atol=1e-4 |
| 50 | + @test body_aero.panels[i].delta ≈ 0.0 atol=1e-4 |
| 51 | + end |
| 52 | + |
| 53 | + @testset "Complex Wing Deformation" begin |
| 54 | + # Load existing complex_wing.yaml with multiple sections |
| 55 | + complex_wing_file = test_data_path("yaml_geometry", "complex_wing.yaml") |
| 56 | + wing = Wing(complex_wing_file; n_panels=12, n_groups=3) |
| 57 | + body_aero = BodyAerodynamics([wing]) |
| 58 | + |
| 59 | + # Store original points for multiple panels |
| 60 | + original_points = [] |
| 61 | + test_indices = [1, length(body_aero.panels) ÷ 2, length(body_aero.panels)] |
| 62 | + for i in test_indices |
| 63 | + push!(original_points, ( |
| 64 | + LE=copy(body_aero.panels[i].LE_point_1), |
| 65 | + TE=copy(body_aero.panels[i].TE_point_1) |
| 66 | + )) |
| 67 | + end |
| 68 | + |
| 69 | + # Apply spanwise-varying deformation |
| 70 | + theta_dist = [deg2rad(10.0 * i / wing.n_panels) for i in 1:wing.n_panels] # Linear twist distribution |
| 71 | + delta_dist = [deg2rad(-5.0 + 10.0 * i / wing.n_panels) for i in 1:wing.n_panels] # Varying deflection |
| 72 | + |
| 73 | + VortexStepMethod.deform!(wing, theta_dist, delta_dist) |
| 74 | + VortexStepMethod.reinit!(body_aero) |
| 75 | + |
| 76 | + # Check that different panels have different deformations |
| 77 | + for (idx, i) in enumerate(test_indices) |
| 78 | + deformed_te = body_aero.panels[i].TE_point_1 |
| 79 | + deformed_le = body_aero.panels[i].LE_point_1 |
| 80 | + |
| 81 | + # Points should have changed |
| 82 | + @test !isapprox(original_points[idx].TE, deformed_te, atol=1e-2) |
| 83 | + @test !isapprox(original_points[idx].LE, deformed_le, atol=1e-2) |
| 84 | + end |
| 85 | + |
| 86 | + # Check that the deformation is applied correctly |
| 87 | + # First panel should have smaller theta, last panel should have larger theta |
| 88 | + @test body_aero.panels[1].delta < body_aero.panels[end].delta |
| 89 | + |
| 90 | + # Reset and verify |
| 91 | + VortexStepMethod.deform!(wing, zeros(wing.n_panels), zeros(wing.n_panels)) |
| 92 | + VortexStepMethod.reinit!(body_aero) |
| 93 | + |
| 94 | + for (idx, i) in enumerate(test_indices) |
| 95 | + reset_te = body_aero.panels[i].TE_point_1 |
| 96 | + reset_le = body_aero.panels[i].LE_point_1 |
| 97 | + @test original_points[idx].TE ≈ reset_te atol=1e-4 |
| 98 | + @test original_points[idx].LE ≈ reset_le atol=1e-4 |
| 99 | + @test body_aero.panels[i].delta ≈ 0.0 atol=1e-4 |
| 100 | + end |
| 101 | + end |
| 102 | + |
| 103 | + @testset "Multiple Reinit Calls with NTuple aero_data" begin |
| 104 | + # This test specifically checks the NTuple handling fix |
| 105 | + simple_wing_file = test_data_path("yaml_geometry", "simple_wing.yaml") |
| 106 | + wing = Wing(simple_wing_file; n_panels=4, n_groups=2) |
| 107 | + |
| 108 | + # Verify that sections have NTuple aero_data (for wings with simple polars) |
| 109 | + # or other valid AeroData types |
| 110 | + @test wing.sections[1].aero_data !== nothing |
| 111 | + |
| 112 | + # Perform multiple reinit! calls to ensure NTuple handling works |
| 113 | + for _ in 1:5 |
| 114 | + VortexStepMethod.reinit!(wing) |
| 115 | + end |
| 116 | + |
| 117 | + # Wing should still be valid after multiple reinits |
| 118 | + @test wing.sections[1].aero_data !== nothing |
| 119 | + @test length(wing.sections) == 2 |
| 120 | + end |
| 121 | + |
| 122 | + @testset "Deformation with BodyAerodynamics Reinit" begin |
| 123 | + # Test that reinit! on BodyAerodynamics properly handles deformed wings |
| 124 | + simple_wing_file = test_data_path("yaml_geometry", "simple_wing.yaml") |
| 125 | + wing = Wing(simple_wing_file; n_panels=4, n_groups=2) |
| 126 | + body_aero = BodyAerodynamics([wing]) |
| 127 | + |
| 128 | + # Apply deformation |
| 129 | + theta_dist = fill(deg2rad(15.0), wing.n_panels) |
| 130 | + delta_dist = fill(deg2rad(3.0), wing.n_panels) |
| 131 | + VortexStepMethod.deform!(wing, theta_dist, delta_dist) |
| 132 | + |
| 133 | + # Store state after deformation |
| 134 | + i = length(body_aero.panels) ÷ 2 |
| 135 | + |
| 136 | + # Multiple reinit calls should work without errors |
| 137 | + for _ in 1:3 |
| 138 | + VortexStepMethod.reinit!(body_aero; |
| 139 | + va=zeros(3), |
| 140 | + omega=zeros(3), |
| 141 | + init_aero=true |
| 142 | + ) |
| 143 | + end |
| 144 | + |
| 145 | + # Panel should maintain deformation |
| 146 | + @test body_aero.panels[i].delta ≈ deg2rad(3.0) atol=1e-6 |
| 147 | + end |
| 148 | + |
| 149 | + @testset "Edge Cases" begin |
| 150 | + simple_wing_file = test_data_path("yaml_geometry", "simple_wing.yaml") |
| 151 | + wing = Wing(simple_wing_file; n_panels=2, n_groups=1) |
| 152 | + body_aero = BodyAerodynamics([wing]) |
| 153 | + |
| 154 | + # Test zero deformation |
| 155 | + VortexStepMethod.deform!(wing, zeros(wing.n_panels), zeros(wing.n_panels)) |
| 156 | + VortexStepMethod.reinit!(body_aero) |
| 157 | + @test all(p.delta ≈ 0.0 for p in body_aero.panels) |
| 158 | + |
| 159 | + # Test large deformation angles |
| 160 | + theta_dist = fill(deg2rad(60.0), wing.n_panels) |
| 161 | + delta_dist = fill(deg2rad(30.0), wing.n_panels) |
| 162 | + |
| 163 | + # Should not error even with large angles |
| 164 | + VortexStepMethod.deform!(wing, theta_dist, delta_dist) |
| 165 | + VortexStepMethod.reinit!(body_aero) |
| 166 | + @test all(p.delta ≈ deg2rad(30.0) for p in body_aero.panels) |
| 167 | + |
| 168 | + # Test negative angles |
| 169 | + theta_dist = fill(deg2rad(-20.0), wing.n_panels) |
| 170 | + delta_dist = fill(deg2rad(-10.0), wing.n_panels) |
| 171 | + VortexStepMethod.deform!(wing, theta_dist, delta_dist) |
| 172 | + VortexStepMethod.reinit!(body_aero) |
| 173 | + @test all(p.delta ≈ deg2rad(-10.0) for p in body_aero.panels) |
| 174 | + end |
| 175 | +end |
0 commit comments