|
| 1 | +# Linearize the closed loop system consisting of the winch, kite and upper force controller. |
| 2 | + |
| 3 | +using Pkg |
| 4 | +if ! ("ControlPlots" ∈ keys(Pkg.project().dependencies)) |
| 5 | + using TestEnv; TestEnv.activate() |
| 6 | + using Test |
| 7 | +end |
| 8 | +using WinchControllers, WinchModels, KiteUtils, ControlPlots, ControlSystemsBase, FiniteDiff |
| 9 | +import FiniteDiff: finite_difference_jacobian |
| 10 | + |
| 11 | +if isfile("data/system_tuned.yaml") |
| 12 | + set = load_settings("system_tuned.yaml") |
| 13 | +else |
| 14 | + set = load_settings("system.yaml") |
| 15 | +end |
| 16 | +wcs = WCSettings(dt=0.02) |
| 17 | +update(wcs) |
| 18 | +wcs.test = true |
| 19 | + |
| 20 | +winch = Winch(wcs, set) |
| 21 | + |
| 22 | +# find equilibrium speed |
| 23 | +function find_equilibrium_speed(winch, set_speed, force, n=10000) |
| 24 | + last_v_act = 0.0 |
| 25 | + for v_set in range(0.0, 2*set_speed, n) |
| 26 | + lim_speed = minimum([v_set, set_speed]) |
| 27 | + set_force(winch, force) |
| 28 | + set_v_set(winch, lim_speed) |
| 29 | + v_act = get_speed(winch) |
| 30 | + on_timer(winch) |
| 31 | + if v_set > 0 && abs(v_act - last_v_act) < 1e-6 |
| 32 | + return v_act |
| 33 | + end |
| 34 | + last_v_act = v_act |
| 35 | + end |
| 36 | + set_v_set(winch, set_speed) |
| 37 | + on_timer(winch) |
| 38 | + @error "Failed to find equilibrium speed" |
| 39 | +end |
| 40 | + |
| 41 | +function motor_dynamics(x, u) |
| 42 | + # x: state vector, e.g., [v_act] |
| 43 | + # u: input vector, e.g., [v_set, force] |
| 44 | + v_act = x[1] |
| 45 | + v_set, force = u[1], u[2] |
| 46 | + acc = calc_acceleration(winch.wm, v_act, force; set_speed = v_set) |
| 47 | + return [acc] |
| 48 | +end |
| 49 | + |
| 50 | +function calc_force(v_wind, v_ro) |
| 51 | + (v_wind - v_ro)^2 * 4000.0 / 16.0 |
| 52 | +end |
| 53 | + |
| 54 | +function system_dynamics(x, u) |
| 55 | + # x: state vector, e.g., [v_act] |
| 56 | + # u: input vector, e.g., [v_set, v_wind] |
| 57 | + v_act = x[1] |
| 58 | + v_set, v_wind = u[1], u[2] |
| 59 | + force = calc_force(v_wind, v_act) |
| 60 | + acc = calc_acceleration(winch.wm, v_act, force; set_speed = v_set) |
| 61 | + return [acc] |
| 62 | +end |
| 63 | + |
| 64 | +function linearize(winch, v_set, v_wind) |
| 65 | + force = calc_force(v_wind, v_set) |
| 66 | + v_act = find_equilibrium_speed(winch, v_set, force) |
| 67 | + x0 = [v_act] # State at operating point |
| 68 | + u0 = [v_set, v_wind] # Input at operating point |
| 69 | + A = finite_difference_jacobian(x -> system_dynamics(x, u0), x0) |
| 70 | + B = finite_difference_jacobian(u -> system_dynamics(x0, u), u0) |
| 71 | + C = [1.0] |
| 72 | + D = [0.0 0.0] |
| 73 | + siso_sys = ss(A, B[:, 1], C, D[:, 1]) |
| 74 | +end |
| 75 | + |
| 76 | +for v_wind in range(1, 9, length=9) |
| 77 | + v_set = 0.57*v_wind |
| 78 | + @info "Linearizing for v_wind: $v_wind m/s, v_ro: $(round(v_set, digits=2)) m/s" |
| 79 | + sys_new = linearize(winch, v_set, v_wind) |
| 80 | + bode_plot(sys_new; from=0.76, to=2.85, title="Linearized System, v_wind=1..9 m/s") |
| 81 | +end |
0 commit comments