|
| 1 | +# Difference Between Gate Multipliers in HH2_magic and HH2_reason |
| 2 | + |
| 3 | +This note compares `HH2_magic` and `HH2_reason` with respect to **when the gate multipliers `m_fcond / h_fcond / n_fcond` are updated**, and shows the corresponding auto-generated C++ code and the time-stepping order. |
| 4 | + |
| 5 | +We use the following notation: |
| 6 | + |
| 7 | +- Gating variables: `m(t), h(t), n(t)` |
| 8 | +- Gate multipliers: |
| 9 | + - `m_fcond(t) = m(t)^3` |
| 10 | + - `h_fcond(t) = h(t)` |
| 11 | + - `n_fcond(t) = n(t)^4` |
| 12 | +- Sodium and potassium currents: |
| 13 | + - `inahh2(t) = gnabar * m_fcond(t) * h_fcond(t) * (v(t) - ena)` |
| 14 | + - `ikhh2(t) = gkbar * n_fcond(t) * (v(t) - ek)` |
| 15 | + |
| 16 | +Key question: in a discrete time step `t_n → t_{n+1}`, at which time point (`t_n` or `t_{n+1}`) are `m_fcond / h_fcond / n_fcond` computed from `m,h,n`? |
| 17 | + |
| 18 | +--- |
| 19 | + |
| 20 | +## 1. MOD-Level Comparison |
| 21 | + |
| 22 | +### 1.1 HH2_magic.mod (gate multipliers computed in BREAKPOINT) |
| 23 | + |
| 24 | +Key fragment (simplified): |
| 25 | + |
| 26 | +```nmodl |
| 27 | +BREAKPOINT { |
| 28 | + SOLVE state METHOD cnexp |
| 29 | +
|
| 30 | + : gate fcond factors (similar to HH2_nondiff style) |
| 31 | + m_fcond = m*m*m |
| 32 | + h_fcond = h |
| 33 | + n_fcond = n*n*n*n |
| 34 | +
|
| 35 | + : Use precomputed fcond factors (set in evaluate_fct) |
| 36 | + inahh2 = gnabar * m_fcond * h_fcond * (v - ena) |
| 37 | + ikhh2 = gkbar * n_fcond * (v - ek) |
| 38 | + ina = inahh2 |
| 39 | + ik = ikhh2 |
| 40 | +} |
| 41 | +
|
| 42 | +DERIVATIVE state { |
| 43 | + evaluate_fct(v) |
| 44 | + m' = (m_inf - m) / tau_m |
| 45 | + h' = (h_inf - h) / tau_h |
| 46 | + n' = (n_inf - n) / tau_n |
| 47 | +} |
| 48 | +
|
| 49 | +PROCEDURE evaluate_fct(v(mV)) { |
| 50 | + ... |
| 51 | + tau_m, tau_h, tau_n, m_inf, h_inf, n_inf, m_exp, h_exp, n_exp |
| 52 | + are computed from v |
| 53 | + ... |
| 54 | +} |
| 55 | +``` |
| 56 | + |
| 57 | +Properties: |
| 58 | + |
| 59 | +- In `BREAKPOINT`, after `state` has updated `m,h,n`, the code **immediately recomputes `m_fcond, h_fcond, n_fcond` from the updated `m,h,n`**. |
| 60 | +- `evaluate_fct` only computes time constants and steady-state values from `v`, and does not touch `m_fcond / h_fcond / n_fcond`. |
| 61 | + |
| 62 | +### 1.2 HH2_reason.mod (gate multipliers computed in evaluate_fct) |
| 63 | + |
| 64 | +Key fragment: |
| 65 | + |
| 66 | +```nmodl |
| 67 | +BREAKPOINT { |
| 68 | + SOLVE state METHOD cnexp |
| 69 | +
|
| 70 | + : Use precomputed fcond factors (set in evaluate_fct) |
| 71 | + inahh2 = gnabar * m_fcond * h_fcond * (v - ena) |
| 72 | + ikhh2 = gkbar * n_fcond * (v - ek) |
| 73 | + ina = inahh2 |
| 74 | + ik = ikhh2 |
| 75 | +} |
| 76 | +
|
| 77 | +DERIVATIVE state { |
| 78 | + evaluate_fct(v) |
| 79 | + m' = (m_inf - m) / tau_m |
| 80 | + h' = (h_inf - h) / tau_h |
| 81 | + n' = (n_inf - n) / tau_n |
| 82 | +} |
| 83 | +
|
| 84 | +PROCEDURE evaluate_fct(v(mV)) { |
| 85 | + ... |
| 86 | + tau_m, tau_h, tau_n, m_inf, h_inf, n_inf, m_exp, h_exp, n_exp |
| 87 | + are computed from v |
| 88 | + ... |
| 89 | + m_exp = 1 - Exp(-dt/tau_m) |
| 90 | + h_exp = 1 - Exp(-dt/tau_h) |
| 91 | + n_exp = 1 - Exp(-dt/tau_n) |
| 92 | +
|
| 93 | + : gate fcond factors (similar to HH2_nondiff style) |
| 94 | + m_fcond = m*m*m |
| 95 | + h_fcond = h |
| 96 | + n_fcond = n*n*n*n |
| 97 | +} |
| 98 | +``` |
| 99 | + |
| 100 | +Properties: |
| 101 | + |
| 102 | +- `BREAKPOINT` no longer updates `m_fcond / h_fcond / n_fcond`; it only uses them. |
| 103 | +- `evaluate_fct(v)` computes `tau_*` and `*_inf` and then **updates the gate multipliers from the current `m,h,n`**. |
| 104 | + |
| 105 | +--- |
| 106 | + |
| 107 | +## 2. Time Ordering in the Auto-Generated C++ Code |
| 108 | + |
| 109 | +Assume fixed time step and `cnexp` method. For one step `t_n → t_{n+1}`: |
| 110 | + |
| 111 | +- `m_n = m(t_n), m_{n+1} = m(t_{n+1})` |
| 112 | +- `v_n = v(t_n)` (voltage is determined by solving the cable equation; here we focus only on `m,h,n` vs gate multipliers). |
| 113 | + |
| 114 | +### 2.1 Call Order in HH2_magic.cpp |
| 115 | + |
| 116 | +Key functions (irrelevant parts omitted): |
| 117 | + |
| 118 | +```cpp |
| 119 | +// state: call evaluate_fct(v) first, then update m,h,n with cnexp |
| 120 | +static int state (_internalthreadargsproto_) { { |
| 121 | + evaluate_fct ( _threadargscomma_ v ) ; |
| 122 | + m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_m)))*(- ( ( ( m_inf ) ) / tau_m ) / ( ( ( ( - 1.0 ) ) ) / tau_m ) - m) ; |
| 123 | + h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_h)))*(- ( ( ( h_inf ) ) / tau_h ) / ( ( ( ( - 1.0 ) ) ) / tau_h ) - h) ; |
| 124 | + n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_n)))*(- ( ( ( n_inf ) ) / tau_n ) / ( ( ( ( - 1.0 ) ) ) / tau_n ) - n) ; |
| 125 | + } |
| 126 | + return 0; |
| 127 | +} |
| 128 | + |
| 129 | +// evaluate_fct: updates *_inf, tau_*, *_exp, but NOT m_fcond/h_fcond/n_fcond |
| 130 | +static int evaluate_fct ( _internalthreadargsprotocomma_ double _lv ) { |
| 131 | + ... |
| 132 | + tau_m = 1.0 / ( _la + _lb ) / tadj ; |
| 133 | + m_inf = _la / ( _la + _lb ) ; |
| 134 | + ... |
| 135 | + tau_h = ... |
| 136 | + h_inf = ... |
| 137 | + ... |
| 138 | + tau_n = ... |
| 139 | + n_inf = ... |
| 140 | + m_exp = 1.0 - Exp ( _threadargscomma_ - dt / tau_m ) ; |
| 141 | + h_exp = 1.0 - Exp ( _threadargscomma_ - dt / tau_h ) ; |
| 142 | + n_exp = 1.0 - Exp ( _threadargscomma_ - dt / tau_n ) ; |
| 143 | + return 0; |
| 144 | +} |
| 145 | + |
| 146 | +// _nrn_current: recompute gate multipliers from CURRENT m,h,n |
| 147 | +static double _nrn_current(_internalthreadargsprotocomma_ double _v) { |
| 148 | +double _current=0.; v=_v; |
| 149 | +{ { |
| 150 | + m_fcond = m * m * m ; |
| 151 | + h_fcond = h ; |
| 152 | + n_fcond = n * n * n * n ; |
| 153 | + inahh2 = gnabar * m_fcond * h_fcond * ( v - ena ) ; |
| 154 | + ikhh2 = gkbar * n_fcond * ( v - ek ) ; |
| 155 | + ina = inahh2 ; |
| 156 | + ik = ikhh2 ; |
| 157 | + } |
| 158 | + _current += ina; |
| 159 | + _current += ik; |
| 160 | + |
| 161 | +} return _current; |
| 162 | +} |
| 163 | +``` |
| 164 | +
|
| 165 | +For `t_n → t_{n+1}`: |
| 166 | +
|
| 167 | +1. At the beginning of the step: `m = m_n`. |
| 168 | +2. Call `state()`: |
| 169 | + - `evaluate_fct(v_n)` computes `tau_m, tau_h, tau_n, m_inf, ...`; it does **not** touch `m_fcond / h_fcond / n_fcond`; |
| 170 | + - cnexp updates `m,h,n` to `m_{n+1}, h_{n+1}, n_{n+1}`. |
| 171 | +3. Call `_nrn_current()`: |
| 172 | + - recompute the gate multipliers from **updated** `m_{n+1}, h_{n+1}, n_{n+1}`; |
| 173 | + - compute `inahh2, ikhh2` from these multipliers. |
| 174 | +
|
| 175 | +Conclusion: **in `HH2_magic`, the gate multipliers used in the current are aligned with `m,h,n` at time `t_{n+1}`.** |
| 176 | +
|
| 177 | +### 2.2 Call Order in HH2_reason.cpp |
| 178 | +
|
| 179 | +Key functions: |
| 180 | +
|
| 181 | +```cpp |
| 182 | +// state: also calls evaluate_fct(v) first, then updates m,h,n |
| 183 | +static int state (_internalthreadargsproto_) { { |
| 184 | + evaluate_fct ( _threadargscomma_ v ) ; |
| 185 | + m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_m)))*(- ( ( ( m_inf ) ) / tau_m ) / ( ( ( ( - 1.0 ) ) ) / tau_m ) - m) ; |
| 186 | + h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_h)))*(- ( ( ( h_inf ) ) / tau_h ) / ( ( ( ( - 1.0 ) ) ) / tau_h ) - h) ; |
| 187 | + n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_n)))*(- ( ( ( n_inf ) ) / tau_n ) / ( ( ( ( - 1.0 ) ) ) / tau_n ) - n) ; |
| 188 | + } |
| 189 | + return 0; |
| 190 | +} |
| 191 | +
|
| 192 | +// evaluate_fct: at the END, update gate multipliers from CURRENT m,h,n |
| 193 | +static int evaluate_fct ( _internalthreadargsprotocomma_ double _lv ) { |
| 194 | + ... |
| 195 | + tau_m = ... |
| 196 | + m_inf = ... |
| 197 | + ... |
| 198 | + tau_h = ... |
| 199 | + h_inf = ... |
| 200 | + ... |
| 201 | + tau_n = ... |
| 202 | + n_inf = ... |
| 203 | + m_exp = 1.0 - Exp ( _threadargscomma_ - dt / tau_m ) ; |
| 204 | + h_exp = 1.0 - Exp ( _threadargscomma_ - dt / tau_h ) ; |
| 205 | + n_exp = 1.0 - Exp ( _threadargscomma_ - dt / tau_n ) ; |
| 206 | + m_fcond = m * m * m ; |
| 207 | + h_fcond = h ; |
| 208 | + n_fcond = n * n * n * n ; |
| 209 | + return 0; |
| 210 | +} |
| 211 | +
|
| 212 | +// _nrn_current: just uses the precomputed gate multipliers |
| 213 | +static double _nrn_current(_internalthreadargsprotocomma_ double _v) { |
| 214 | +double _current=0.; v=_v; |
| 215 | +{ { |
| 216 | + inahh2 = gnabar * m_fcond * h_fcond * ( v - ena ) ; |
| 217 | + ikhh2 = gkbar * n_fcond * ( v - ek ) ; |
| 218 | + ina = inahh2 ; |
| 219 | + ik = ikhh2 ; |
| 220 | + } |
| 221 | + _current += ina; |
| 222 | + _current += ik; |
| 223 | +
|
| 224 | +} return _current; |
| 225 | +} |
| 226 | +``` |
| 227 | + |
| 228 | +For `t_n → t_{n+1}`: |
| 229 | + |
| 230 | +1. At the beginning of the step: `m = m_n`. |
| 231 | +2. Call `state()`: |
| 232 | + - `evaluate_fct(v_n)`: |
| 233 | + - computes `tau_m, tau_h, tau_n, m_inf, ...` from `v_n`; |
| 234 | + - uses the **current** `m_n, h_n, n_n` to write `m_fcond, h_fcond, n_fcond`; |
| 235 | + - cnexp then updates `m,h,n` to `m_{n+1}, h_{n+1}, n_{n+1}`. |
| 236 | +3. Call `_nrn_current()`: |
| 237 | + - uses the precomputed `m_fcond, h_fcond, n_fcond` from step 2; |
| 238 | + - at this moment `m,h,n` are already `m_{n+1}, h_{n+1}, n_{n+1}`, but the gate multipliers still correspond to `m_n, h_n, n_n`. |
| 239 | + |
| 240 | +Conclusion: **in `HH2_reason`, the gate multipliers used in the current correspond to the gating state at time `t_n`, while `m,h,n` themselves have advanced to `t_{n+1}`. The gate multipliers lag one time step behind the gating variables.** |
| 241 | + |
0 commit comments